
Sort it Like You Mean It: Discovering Semantically
Interesting Attribute Augmentations to Sort Tables
Akash Khatri
University of Utah

akash.m.khatri@utah.edu

Mir Mahathir Mohammad
University of Utah

mahathir.mohammad@utah.edu

El Kindi Rezig
University of Utah

elkindi.rezig@utah.edu

ABSTRACT

Sorting is a fundamental operation in table analysis. Data scien-
tists frequently sort tables to uncover key insights—for example,
identifying the top 10 products by sales. However, this process is
largely manual. Data scientists must (1) understand the semantics
behind the sorting they wish to apply, and (2) ensure the necessary
attributes are present—often requiring manual augmentation of
the table. But what if data scientists could receive suggestions for
semantically meaningful ways to sort a table, powered by auto-
matic augmentations from a data lake? In this demo, we present
InsightSort, an end-to-end system that recommends attribute
augmentations to enable richer, more insightful sorting for table
exploration. InsightSort works by: (1) discovering potential aug-
mentations by linking the input table with relevant data lake tables,
and (2) leveraging a Large Language Model (LLM) to synthesize
the top-k diverse sorting attributes based on their semantics. A
companion video is available at [1].

1 INTRODUCTION

Sorting is a critical operation in both data management and ex-
ploratory analysis. For instance, when analyzing a table of employee
records, sorting by attributes such as income or seniority can sur-
face meaningful patterns or generate insightful reports. This might
reveal, for example, employees who have stayed with the company
for many years but have received relatively few raises—highlighting
potential disparities or areas for further investigation.

However, this process assumes that users already know which
attributes to sort by and that these attributes are readily available
in the table. It also requires users to understand the semantics of
the desired sorting logic—for example, recognizing that sorting
employees by years of seniority may involve computing tenure
from hire dates.

Data lakes—whether organizational or public [8]—are becoming
increasingly ubiquitous, offering opportunities for data augmen-
tation for several tasks [5]. We propose an approach to identify
candidate sorting attribute sets within a data lake to augment a
given input table. This enables the table to be sorted in semantically
meaningful ways that go beyond its original schema.

Even when users have a general sense of the sorting semantics
they want to apply, distinguishing between subtle variations in
sorting strategies can be challenging. For example, if users wish
to sort countries by “economic performance,” potential sorting at-
tributes might include GDP, GDP per capita, GDP growth rate, or
inflation rate. Each of these captures a different facet of economic
performance, and identifying the most relevant attributes often
requires significant manual effort.

What if users could receive recommendations for interesting
ways to sort a table—even when the required attributes are not

initially present? These attributes could be automatically sourced
from a data lake or even generated using a Large Language Model
(LLM) [2].

Country 
Name

Population 
(Millions)

Median 
Age

Brazil 214 33.5

Canada 38 41

Romania 19 43

Nigeria 216 18

Country 
Name

GDP (USD 
Billions)

Brazil 1840

Canada 2020

Romania 290

Nigeria 514

Given a table, the user wants suggestions on how 
to sort it in semantically meaningful ways by 
augmenting it with other attributes.

For example, we could add the GDP column to the 
table and sort the countries by their GDP.

Moreover, we could sort the table by adding two 
columns [GDP, Healthcare expenditure] and sort by 
GDP first and then healthcare expenditure. This 
sort would highlight how much countries spend on 
healthcare relative to their GDP.

Country 
Name

Phone code

Brazil 55

Canada 1

Romania 40

Nigeria 234
Country 

Name
HDI (Human 

Development 
Index)

Brazil 0.765

Canada 0.936

Romania 0.828

Nigeria 0.539

Sort countries by their HDI
Country 

Name
Healthcare 

Expenditure 
(% of GDP)

Brazil 9.5%

Canada 10.8%

Romania 5.2%

Nigeria 3.8%

GDP (USD 
Billions)

2020

1840

514

290

GDP (USD 
Billions)

2020 10.8%

1840 9.5%

514 3.8%

290 5.2%

Sort countries by their 
GDP

Sort countries by 
healthcare expenditure 

relative to their GDP

Sorting countries by 
phone code is not 

semantically 
meaningful

Healthcare Expenditure 
(% of GDP)

Input table

Data lake

Input table (T_input)

Augment [GDP, Healthcare Expenditure (% of GDP)

Augment [GDP]

T1 T2 T3

t1

t2

t3

t4

t2

t1

t4

t3

Figure 1: The input table can be augmented with several at-

tributes from the data lake to enable semantically interesting

sorting of countries. The tuple IDs are shown next to the sug-

gested augmentation attributes to reflect a descending sort.

Example 1.1. A data scientist, Lou, has an input table of countries
with the Population and Median Age attributes (Figure 1). Lou also
has access to a data lake containing numerous tables, but it’s unclear
which sets of attributes can augment the current table to enable
insightful sorting. The data lake tables suitable for augmentation
must be joinable with the input table. For instance, joining 𝑇1 with
the input table using the columns Country Name introduces a new
attribute GDP, enabling countries to be sorted by GDP, a crucial
measure of economic performance.

Another semantically meaningful way to sort the input table is
by joining it first with 𝑇2 and then 𝑇3, adding two attributes: GDP
and Healthcare Expenditure. These attributes allow for sorting
the countries first by GDP and then by healthcare expenditure,
highlighting how much countries invest in healthcare relative to



Akash Khatri, Mir Mahathir Mohammad, and El Kindi Rezig

their GDP. However, not all sorting attributes are useful. For in-
stance, Sorting countries using their phone code is not semantically
meaningful.

We present a demo of InsightSort, an end-to-end system that
(1) creates indexes that keep track of the sorting columns in data lake
tables; (2) effiently determines, given an input table, what data lake
columns are joinable with it; (3) selects sorting attributes that are
semantically meaningful; and (4) diversifies the sorting strategies
based on their semantic interestingness. Finally, evaluating LLMs
for table sorting is an unexplored area. This demo offers VLDB
participants a unique opportunity to assess the performance of
several leading LLMs—such as GPT-4o [2], Perplexity AI [9], and
Claude [3]—on this important table analysis task.

Related work. Several techniques for join discovery have been pro-
posed [4, 11]. In this line of work, users specify a query (e.g., exam-
ple table) and the goal is to find joinable tables from the data lake.
In Metam [5], the goal is to perform attribute augmentation for a
given downstream task by specifying its utility function. Insight-
Sort differs from existing work because (1) its goal is orthogonal
to the join discovery being used, one can choose any join discovery
method to find joinable tables; and (2) it searches for semantically-
meaningful sorting attributes to augment tables, which is a target
task that has never been explored in prior work.

2 SYSTEM OVERVIEW

Figure 2 illustrates the high-level workflow of InsightSort. In a
nutshell, InsightSort ingests a data lake of tables and builds neces-
sary indexes to navigate it in the offline phase. In the online phase,
InsightSort takes as input a table. InsightSort finds possible at-
tribute augmentations for the input table from the data lake, scores
them by their semantic interestingness, and finally diversifies the
sorting results.

2.1 Offline processing of the data lake

In this phase, InsightSort ingests a data lake of tables and indexes
it for joinability testing, i.e., given an input column, which data
lake columns are joinable with it.

2.1.1 Building the joinability index. Since the data lake can contain
a large number of tables, it is important to build indexes that enable
efficient joinability testing. To this end, InsightSort proceeds as
follows:

(1) We generate vector embeddings for each column in the data lake
by following the approach proposed in [4], which leverages the
pre-trained language model SBERT [10]. Briefly, this method
constructs a textual summary for each column—such as a list
of unique values—and then uses the language model to encode
these summaries into vector embeddings.

(2) After the vector embeddings of all columns have been cre-
ated, InsightSort index them using Hierarchical Navigable
Small World (HNSW) [7]. This index enables fast Approximate
Nearest Neighbor (ANN) queries to check if a query column
embedding matches a data lake column embedding within a
distance threshold.

Department Audit_Date Compliance_Area Regulation_Ref

Finance 2023-03-15 SOX Compliance SOX-301

HR 2023-04-10 Labor Law LL-201

Operations 2023-05-22 Safety OSHA-09

IT 2023-06-18 Data Privacy GDPR-101

Regulation_Code Description

SOX301 Financial reporting integrity

LL-201 Minimum wage and overtime pay

Workplace safety standards

GDPR-101 Data protection and privacy

OSHA-09

Audit_Date Compliance_Area Regulation_Ref

2023-03-15 SOX Compliance CR-204

2023-04-10 Labor Law TC-301

2023-05-22 Safety CYB-112

The user uploads an input table

We can union the table union 
those attributes

We can join the two tables 
using this attribute

Script generation

Data lake containing 
collection of tables 

….

3

1

3

2

4

5

Load dataset

Compute anomalies for 
each group

Compute wrangling 
suggestions

Generic anomalies

User-defined anomalies

Generic wranglers

User-defined wranglers

Anomaly ranking

Generate description of 
sorting strategies 

Qualitative selection of 
sorting attributes

Sorting attribute 
discovery

Data lake columns

Generate new attributes 
using LLM

Sort by [GDP, Health 
care expenditure]

 Output

…
.

Compute semantic 
interestingness of sorting 

strategies

Diversity sorting strategies

Permutation-based

Semantic diversity

LLM-based sorting 
suggestions

Get sorting 
suggestions from LLM

Create joinability index
Column clustering

Semantic type indexing

Offline processing of the 
data lake

Online

Figure 2: High-level workflow of InsightSort. InsightSort

ingests and indexes a data lake of tables (offline processing),

which is then used in the online phase to discover sorting

attributes.

2.1.2 Semantic types indexing. InsightSort creates anotherHNSW
index that indexes the vector embeddings of textual description of
columns. To this end, InsightSort performs the following:

(1) Because column names are most often not descriptive, for each
table, InsightSort prompts the LLM (GPT-4o [2]) with the
attribute names and sample values, and requests the semantic
types of each column. The semantic type of a column is its
textual description. For instance, a column’s semantic type can
be “US universities” if it contains names of US universities.

(2) InsightSort uses pre-trained language models (sentence trans-
formers [10]) to generate vector embeddings of the semantic
types.

(3) Finally, InsightSort indexes those vector embeddings using
an HNSW index for fast ANN query answering.

2.2 Online phase

In the online phase, InsightSort leverages the previously created
data lake indexes to find joinable columns to a given query table,
and possible join columns for a given sorting description.



Sort it Like You Mean It: Discovering Semantically
Interesting Attribute Augmentations to Sort Tables

2.2.1 Uploading the input table. InsightSort allows users to up-
load their input table. InsightSort will then look for sorting
columns by augmenting it with data lake columns or creating new
columns using the LLM.

2.2.2 LLM-based sorting suggestions. InsightSort prompts the
LLM with the input table schema, and sample rows, and asks for
“interesting” sorting attributes that can be added to the input table.
The LLM identifies a list of attributes that can be added to sort the
rows. For instance, in the example table 𝑇 2 in Figure 1, GPT-4o [2]
suggested the sorting attributes in Table 1 (we are only including a
sample of them).

2.2.3 Sorting attribute discovery. Given the suggested sorting at-
tributes by the LLM, InsightSort attempts to locate them in the
data lake. Of course, those attributes will not necessarily have the
same name as suggested by the LLM, so InsightSort proceeds as
follows:

(1) Vector embedding generation: InsightSort generates vec-
tor embeddings of the suggested sorting attribute textual de-
scription using a pre-trained language model. InsightSort
uses Sentence Bert [10] to produce those embeddings.

(2) Locating the query attributes: InsightSort finds the data
lake columns that match the query column by performing an
ANN query on the semantic type HNSW index. After this, In-
sightSort has to determine if the tables of those matching
columns are joinable with the query table. To this end, it uses
the joinability index that was created offline.

Additionally, InsightSort can also ask the LLM to generate
a sorting attribute directly. This is appropriate for cases where
the sorting attribute is “general-knowledge” and not private (e.g.,
company-specific data).

Attribute Description / Use for Sorting

Population (millions) Sort by population size
GDP per Capita (USD) Economic comparison across

countries

Table 1: A sample of the suggested sorting attributes by GPT-

4o for table 𝑇 2 in Figure 1.

2.2.4 Computing semantic interestingness of sorting columns. We
now define the semantic interestingness of a set of sorting attributes
with respect to a query table:
Semantic interestingness of a sorting attribute. Given an
input table 𝑇 and a candidate set of columns 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑚},
the semantic interestingness of a given sort strategy (attributes by
which to sort) captures the following two components:

• Semantic utility. How semantically interesting the attributes in
𝐶 are in generating an interesting sort order for𝑇 (𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑢𝑡𝑖𝑙−
𝑖𝑡𝑦 (𝑇,𝐶)). This is computed by prompting an LLM with the col-
umn names of 𝑇 and 𝐶 and asking it to derive a score for how
interesting sorting 𝑇 with 𝐶 is.

• Column uniqueness.We also want to make sure the attributes
in 𝐶 do not overlap significantly with the attributes in 𝑇 . That
is, we don’t want to augment the table with duplicate attributes.

Column uniqueness is computed by averaging the cosine simi-
larity between the columns in 𝐶 and the attributes in 𝑇 (we get
the top-1 match from 𝑇 for each column in 𝐶).
In summary, the semantic interestingness is defined as:

𝐼 (𝑇,𝐶) = 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑇,𝐶) + 𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 (𝑇,𝐶)
2

(1)

Seamntic interestingness allows us to determine, for each join-
able table in the data lake, whether adding its attributes to the input
table would result in semantically-interesting sorting attributes.

2.2.5 Diversifying the results. InsightSort returns a set of diverse
sorting columns. That is, we want to make sure we minimize dupli-
cate sorting attributes. To this end, we adopt two strategies:
• Permutation-based: for two given sorting attributes 𝐴 and

𝐵, applied on the input table 𝑇 with rows identifiers {1, 2, ..., 𝑛},
result in row permutations 𝑆𝐴 and 𝑆𝐵 . That is, 𝐴 and 𝐵 result in
different shuffling of the input table’s rows.
Because we want to produce diverse sorted tables, this means
that two sorted tables should have significantly different per-
mutations of rows. To this end, we use the hamming distance
or levenshtein distance between the permutation arrays of two
sorted tables to determine if they are diverse if the distance is
greater than 𝜃 . Presumably, if two sorting attributes are corre-
lated (e.g., GPD and HDI), they are likely to result in the same
permutation of rows.

• Semantic diversity: In this strategy, we want to diversify sort-
ing attributes if they are “semantically” diverse. To this end,
InsightSort (1) generates the textual description of each sort-
ing strategy using the LLM; (2) generates vector embeddings of
those descriptions using a pre-trained language model (e.g., sen-
tence transformers); and (3) uses an HNSW index to determine
if two sorting strategies are semantically similar, i.e., if they are
within a given distance threshold 𝑑 .

3 DEMONSTRATION PLAN

We demonstrate InsightSort on the following real-world datasets:
(1) Stackoverflow survey dataset 1; (2) Adult dataset 2; and (3) Chicago
crime dataset 3. As for the data lakes, we will be using a repository
of over 1000 CSV files that we crawled from data.gov.

Demonstration outline. In this demo, we aim to showcase (1) the
interactive interface of InsightSort that allows users to explore
various table augmentations for different sorting semantics; (2) the
importance of interestingness scores in exposing various “interest-
ing” sorting attribute sets; and (3) the system’s diversity sorting
which allows users to inspect sorting attributes that are semanti-
cally unique. We now present the demonstration scenario:

1 Uploading the input table and the data lake. The par-
ticipants start by uploading their input table as well as the table
repository from which InsightSort will discover augmentations
(Figure 3 1 ).
2 Customizing joinability thresholds. Once the data lake has
been uploaded, InsightSort finds joinable columns with the input
1https://survey.stackoverflow.co
2https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
3https://www.chicago.gov/city/en/dataset/crime.html



Akash Khatri, Mir Mahathir Mohammad, and El Kindi Rezig

The system generates a list of sorting attribute suggestions, 
their description, and their interestingness scores

User can select a sorting attribute set and review the input 
table after augmenting with that attribute

User can pick a target attribute (e.g., country) for which the 
system can generate sorting attributes (e.g., GDP)2

3

User uploads the input table 
and the data lake tables1

4

Figure 3: The user interface of InsightSort. Participants will have the opportunity to discover several sorting attribute sets

with different semantics.

table. Participants can adjust the joinability thresholds that are
internally used by InsightSort to determine if two columns are
joinable. The goal here is to show that less joinable columns can
create several spurious augmentations.
3 Picking a target attribute. InsightSort allows users to pick
a particular target attribute (e.g., country) for which InsightSort
will discover sorting attributes (e.g., GDP) as illustrated in Fig-
ure 3 2 . Users can also elect not to choose a target attribute, in
which case InsightSort will discover sorting attributes for all
possible attributes in the input table.
4 Sorting attribute suggestions. InsightSort discovers a list of
sorting attributes from the data lake, and displays their description,
as well as their interestingness scores to the user (Figure 3 3 ).
5 Input table augmentation. Upon selecting a particular sorting
attribute set suggestion, InsightSort proceeds to augment the
input table with the selected attribute set (Figure 3 4 ).
6 Comparing sorting attributes. InsightSort allows users to
compare various sorting sets based on how unique they are. This
uniqueness is determined by how similar the sorting permutes the
tuples of the input table, and how semantically unique it is. Users
can adjust the thresholds of diversity to explore different sorting
suggestions. The goal is to demonstrate that including no diversity
filtering results in a large amount of similar sorting suggestions.
7 Comparing different LLMs. InsightSort will also feature
connections to LLMs other than GPT-4o. Those include Gemini [6],
Perplexity AI [9], and [3]. This will allow the participants to select
sorting suggestions across different LLMs, which would provide a
vast array of options.

Demonstration engagement. In addition to a guided demonstration
of InsightSort, wewill encourage participants to upload their own
datasets to perform an interactive table exploration session on them.
Participants will be able to interactively examine sorting attributes
that are semantically relevant to their task and compare them across
different LLMs, joinability thresholds, and interestingness scores.

REFERENCES

[1] [n.d.]. InsightSort demo video. https://drive.google.com/drive/folders/
1Hke2MTKtGF0FRHmrbOwx-nNIFPUcojC9?usp=sharing

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv:2303.08774 (2023).

[3] Anthropic. 2023. Claude. https://www.anthropic.com/index/introducing-claude
Constitutional AI-based large language model.

[4] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi
Oyamada. 2023. DeepJoin: Joinable Table Discovery with Pre-Trained Language
Models. Proc. VLDB Endow. 16, 10 (June 2023), 2458–2470. https://doi.org/10.
14778/3603581.3603587

[5] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. METAM: Goal-
Oriented Data Discovery. arXiv preprint arXiv:2304.09068 unspecified, unspecified
(2023), unspecified–unspecified.

[6] Google DeepMind. 2023. Gemini. https://deepmind.google/technologies/gemini/
Multimodal large language model.

[7] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (April 2020), 824–836.

[8] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data lake management: challenges and opportunities. Proc. VLDB
Endow. 12, 12 (Aug. 2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[9] Perplexity AI. 2023. Perplexity AI. https://www.perplexity.ai
[10] N Reimers. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-

Networks. arXiv preprint arXiv:1908.10084 (2019).
[11] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanterpool,

Vijay Gadepally, andMichael Stonebraker. 2021. DICE: data discovery by example.
(2021).

https://drive.google.com/drive/folders/1Hke2MTKtGF0FRHmrbOwx-nNIFPUcojC9?usp=sharing
https://drive.google.com/drive/folders/1Hke2MTKtGF0FRHmrbOwx-nNIFPUcojC9?usp=sharing
https://www.anthropic.com/index/introducing-claude
https://doi.org/10.14778/3603581.3603587
https://doi.org/10.14778/3603581.3603587
https://deepmind.google/technologies/gemini/
https://doi.org/10.14778/3352063.3352116
https://www.perplexity.ai

	Abstract
	1 Introduction
	2 System overview
	2.1 Offline processing of the data lake
	2.2 Online phase

	3 Demonstration plan
	References

