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ABSTRACT

Finding relevant datasets is critical in any data pipeline but be-
comes challenging when data lacks schemas or metadata, as in data
lakes. This makes it hard to identify the joins needed to produce the
desired dataset. In query-by-example (QbE) join discovery, users
provide a query table with a few example values, aiming to find
joins from data lake tables that produce datasets containing those
examples. Current QbE methods rely only on syntactic similarity,
while semantic join discovery methods do not support QbE inter-
faces that work with limited example values. Moreover, existing
QbE join path discovery methods (1) assume that the matching ta-
bles are directly joinable with each other, whereas in practice, a join
path might contain intermediate tables that don’t match the query
table; and (2) do not ensure that the example tuples are contained in
the returned joined table. We propose SemDisc, an end-to-end join
discovery system that provides (1) discovery of hybrid join paths
using both equi-join and semantic joins across data lake tables,
(2) produces join paths that may include intermediate tables that
do not overlap with the query tables but are needed to build high-
quality joins, and (3) ensures the returned tuples are semantically
similar to the ones in the provided examples. SemDisc supports
efficient querying of joinable tables using an index that keeps track
of high-quality join paths. Our evaluation across diverse workloads
and datasets shows that SemDisc yields an average precision of over
0.86 in finding the correct join paths across various benchmarks,
which is more than a 3× improvement over state-of-the-art join
discovery methods.

1 INTRODUCTION

Data lakes are now widespread, spanning public repositories (e.g.,
US Government’s Open Data [1]) and organization-wide data lakes
(e.g., MIT Data Warehouse [2]). Constructing datasets from data
lake tables—known as data discovery—is challenging, as users must
understand the content and how tables can join with each other.
Unlike traditional databases, data lakes typically lack schemas or ex-
plicit relationships (e.g., primary/foreign keys), making this process
manual and time-consuming.

Given a large data lake, if a user wishes to assemble a dataset that
spans multiple tables, the absence of join information severely im-
pedes progress. Without knowing which tables can be joined—and
on which attributes—users struggle to efficiently and accurately
construct datasets of interest. To address this, several join discovery
systems [30, 37, 60] have emerged to automatically identify joinable
tables by detecting columns with overlapping values. Yet, despite
these advances, existing systems exhibit fundamental limitations,
as we illustrate in the following example.
Example 1. Consider the MIT Data Warehouse [2], a centralized
repository aggregating data from various administrative systems.
Since individual entities (e.g., institutes) manage their own tables,

schemas are inconsistent and value representations may vary. Lou,
a data scientist, wants to build a dataset by providing a query ta-
ble—a small set of example values with example column headers
(Figure 1 1 )—to construct a dataset from the data lake that includes
those examples. Sample tables from the data lake are shown in Fig-
ure 1 2 . Because no single table fully contains the query examples,
a join discovery system must identify join paths across multiple
tables. In this case, the Fclt_organization and Fac_building
tables each partially match the query. To be effective, the data
discovery system should satisfy the following requirements:
(R1) Hybrid Join Paths: Since data lakes contain heterogeneous
tables, the data discovery system must identify join paths that
align with Lou’s intent expressed through the semantic types and
example values, even when columns represent the same concept
differently (e.g., MATS SCI & ENG vs. Materials Science and
Engineering). As shown in Figure 1 3 , the resulting join path
should include both semantic (referred to as 𝑠𝑒𝑚_ 𝑗𝑜𝑖𝑛 in Figure 1 3 )
and equi-joins to answer the query—for example, a semantic join
between Fclt_organization and Fclt_rooms via Name and Org
Code, along with two equi-joins. The final joined table is shown in
Figure 1 4 .
(R2) Best Join Path with Hidden Tables: In Figure 1 3 , note
that the Fclt_rooms and Fclt_floor tables do not contain val-
ues that overlap with the values or semantic types in the query
table; however, it is necessary to link the Fclt_organization and
Fac_building tables in one join path to answer the query. Case
in point, the data discovery system must identify join paths that
include “hidden” intermediate tables needed to reach a table rele-
vant to the query. And those hidden tables can contain semantic or
equi-join between them. We refer to such join paths as join paths
with hidden tables. Existing QbE methods (e.g., [37]) enumerate all
paths between column pairs but do not identify the best join path
that is aligned with the query table.
(R3) Semantic Tuple Matching: Given a query table, Lou ideally
wants the resulting joined tables to contain semantically matching
tuples. For instance, in Figure 1 1 , the query tuple 𝑡1 = (East
Building, Materials Engineering) appears in the final joined
table (Figure 1 4 ) with a different syntactic form: (Building East
62, Materials Science and Engineering) (tuple attributes
ordered according to query columns). The join discovery system
must ensure that all query tuples are semantically preserved in the
output. However, existing QbE systems [37, 60] do not guarantee
or verify that the joined results include semantically equivalent
representations of the input tuples.

To address the above requirements, we introduce SemDisc, a
QbE data discovery system that features the following:
(1) Hybrid Join PathDiscovery at Scale: To addressR1, SemDisc
precomputes and indexes high-quality hybrid join paths offline,
enabling fast and efficient retrieval at query time for QbE queries.



Figure 1: Overview of SemDisc. 1 User provides a query

table. 2 SemDisc searches data lake tables; 3 finds hybrid

join paths; and 4 returns the joined table.

(2) Join Discovery with Hidden Tables: To address requirement
R2, SemDisc builds an Inverted Join Path Index for fast retrieval of
join paths that include query table columns—and, when necessary,
additional hidden tables that do not overlap with the query but are
essential to reaching relevant tables. To our knowledge, SemDisc is
the first data discovery system to support this capability.
(3) Semantic Tuple Validation during Query: SemDisc finds
join paths that are likely to result in tables containing tuples that
are semantically similar to the ones provided by the user in the
example query table (requirement R3).
Contributions.

(1) We formalize the problem of discovering optimal join trees (of
which join paths are a special case) with hidden tables for a
given query table and prove that it is NP-hard (Section 3).

(2) We propose approximation techniques to efficiently compute
the join graph, which encodes both semantic and equi-joins
between data lake columns, along with effective pruning tech-
niques to retain only high-quality join edges (Section 4).

(3) We develop an Inverted Join Path Index to support fast retrieval
of the top-𝑘 join paths for a given query table (Section 5).

(4) We introduce an efficient algorithm to select join paths that
are likely to contain tuples that semantically match the query
table tuples (Section 6).

(5) We conduct an extensive experimental evaluation demonstrat-
ing the effectiveness and efficiency of SemDisc across multiple
real-world datasets and against state-of-the-art data discovery
baselines (Section 7).

2 RELATEDWORK

SemDisc bridges three key problem spaces: (1) join path discov-
ery [65, 69, 75], (2) Query-by-Example (QbE) data discovery [29, 49,
58, 61, 77], and (3) data lake search [8, 9, 12, 23, 24, 28, 30, 32, 39, 57].
As summarized in Table 1, SemDisc is the first end-to-end data dis-
covery system to support the following capabilities for answering
Query-by-Example queries: (1) hybrid join paths combining seman-
tic and equi-joins; (2) join paths with hidden tables; (3) retrieval of
joined tables that semantically match all query tuples; and (4) se-
mantic column-level matching between query and data lake tables
(data lake search).
Equi-join Path Discovery. Numerous systems focus on discov-
ering equi-joinable tables in data lakes [65, 69, 75]. Aurum [30]
constructs a join graph (an enterprise knowledge graph) that users
can query through composable primitives. JOSIE [75] efficiently
estimates set similarity using prefix filters [14], enabling large-scale
equi-join discovery. An extension of Aurum [31] augments this
graph with new links derived from semantic matchers and ontolo-
gies connecting tables by name or attribute. LSH Ensemble [76]
computes Jaccard set containment between a query domain and
candidate columns, while 𝐷3𝐿 [10] employs multiple LSH indexes
to capture schema- and instance-level features for joinable-column
search across datasets.

DBXplorer [3] was among the first systems to support keyword-
based data discovery, identifying join paths across tables that col-
lectively contain the user’s terms. However, it assumes a fixed
relational schema with explicit primary–foreign key relationships.
In contrast, SemDisc targets schema-less data lakes lacking prede-
fined relationships, where discovering join paths requires reasoning
over both equi- and semantic joins.
Semantic Join Path Discovery. Recent work has explored se-
mantic join discovery in data lakes. DeepJoin [22] fine-tunes a pre-
trained language model to measure semantic joinability between
columns. It embeds all columns, indexes them using a Hierarchi-
cal Navigable Small World (HNSW) [52] graph, and retrieves the
top semantically joinable columns for a given query via Approxi-
mate Nearest Neighbor search. Its precursor, PEXESO [21], embeds
column values into high-dimensional vectors and applies pivot-
based filtering [15] to prune candidate comparisons. WarpGate [17]
similarly embeds column values and leverages Locality-Sensitive
Hashing [13] to efficiently locate joinable columns.

Unlike these column-level systems, SemDisc discovers hybrid
join paths that combine equi- and semantic joins across multiple
tables and can include hidden tables not referenced in the query.

Snoopy [38] learns embeddings based on semantic joinability
rather than syntax, retrieving top-𝑘 semantically joinable columns.
SemDisc extends this by supporting tuple-level semantic matching
and hidden-table discovery.Models such as TaBERT [72], TURL [18],
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Ditto [50], and Starmie [27] produce structure-aware embeddings
that encode relationships among table columns and cells. While
SemDisc can plug in such embeddings, it functions as an end-to-end
join discovery system—integrating query-by-example, hidden table
support, and semantic tuple validation beyond embedding-based
similarity.
Query-by-Example Data Discovery. The Query-by-Example
(QbE) paradigm has long been studied in relational databases with
fixed schemas [29, 49, 58, 61, 77]. Our work adopts a similar inter-
face for schema-less data lakes. Ver [37] is the state-of-the-art QbE
data discovery system in this setting, returning top join paths for
a user-provided query table. DICE [60] also discovers join paths
from example tuples, using user feedback to refine results. Both
Ver and DICE rely on MinHash [11] to approximate Jaccard similar-
ity between columns when constructing the join graph. However,
they operate purely on equi-joins, relying on syntactic overlap and
ignoring semantic similarity and data heterogeneity. THETIS [16]
extends QbE-style search to semantic table retrieval using knowl-
edge graphs to rank tables by relevance, but it does not perform
join-path discovery.

DataXFormer [5] addresses QbE transformation discovery: given
example input–output column pairs, it identifies joins that repro-
duce the transformations. Yet it assumes all source attributes lie
in one table and all targets in another, reducing the problem to
a two-table search with functional dependencies (1–1 joins). In
contrast, SemDisc handles attributes spread across multiple tables
without assuming such dependencies, resulting in a substantially
larger and more realistic search space. Discovery-by-navigation
approaches [55] build keyword-centric graphs that guide users
from general to specific attributes. These are designed for semantic
exploration, not join-path construction. SemDisc instead builds a
query-agnostic semantic join graph, enabling efficient join-path
retrieval for any query table at runtime.

Method
Name

Query
Type

Equi-
Joins

Semantic
Joins

Semantic
Search

Hybrid
Join
Paths

Joins
w/Hidden
Tables

Semantic
Tuple

Validation
Starmie[27]

Ta
rg
et

Ta
bl
e
or

Co
lu
m
n

✗ ✗ ✓ ✗ ✗ ✗
SemProp[31] ✗ ✗ ✓ ✗ ✗ ✗
WarpGate[17] ✗ ✓ ✓ ✗ ✗ ✗
PEXESO[21] ✗ ✓ ✓ ✗ ✗ ✗
Gen-T[26] ✓ ✗ ✗ ✗ ✗ ✓
Nexus[36] ✓ ✗ ✗ ✗ ✗ ✓
SANTOS[43] ✗ ✗ ✓ ✗ ✗ ✗
DeepJoin[22] ✓ ✓ ✓ ✗ ✗ ✗
ALITE[44] ✓ ✗ ✗ ✗ ✗ ✗
JOSIE[75] ✓ ✗ ✗ ✗ ✗ ✗
S3D[35] ✓ ✗ ✓ ✗ ✗ ✗
MF-Join[65] ✓ ✗ ✗ ✗ ✗ ✗
SMS-Join[69] ✓ ✓ ✗ ✗ ✗ ✗
BLEND[25] ✓ ✗ ✗ ✗ ✗ ✗
Metam[34] ✓ ✗ ✗ ✗ ✗ ✗
Snoopy[38] ✓ ✓ ✓ ✗ ✗ ✗
Ver[37] Examples ✓ ✗ ✗ ✗ ✓ ✗
THETIS[16] Examples ✗ ✗ ✓ ✗ ✗ ✗
STR[74] Keyword ✗ ✗ ✓ ✗ ✗ ✗
Solo[66] NL ✗ ✗ ✓ ✗ ✗ ✗
Aurum[30] SRQL ✓ ✗ ✗ ✗ ✗ ✗

SemDisc

Example values
and types ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Feature comparison of data discoverymethods. (NL =

Natural Language, SRQL = Source Retrieval Query Language)

3 PROBLEM DEFINITION AND SYSTEM

OVERVIEW

Modern data lakes consist of a large number of heterogeneous
tables collected from diverse sources, often without consistent
schemas or explicit relationships [36, 56]. As a result, discover-
ing how tables in a data lake relate to one another is a non-trivial
challenge. This section formalizes the problem setting of SemDisc,
our system for semantic join discovery across large-scale data lakes.
We begin by establishing the fundamental concepts and notation
used throughout the paper (Section 3.1, and Section 3.2). We then
formally define our problem and establish its hardness (Section 3.3).

3.1 Preliminaries

Semantic Types. Following prior work [33, 63, 68], the seman-
tic type of a column 𝑐 , denoted 𝑡𝑦𝑝𝑒(𝑐), represents the real-world
concept shared by its values (e.g., Person, BirthPlace).

Data Lake Tables.We denote data lake D as a collection of tables
where D = {𝑇1,𝑇2, . . . ,𝑇𝑛}. Each table 𝑇 ∈ D consists of a set
of columns 𝑎𝑡𝑡𝑟 (𝑇 ) = {𝑐1, 𝑐2, . . . , 𝑐𝑧} and a set of data lake tuples
𝑡𝑢𝑝(𝑇 ) = {𝑡1, 𝑡2, . . . , 𝑡𝑟 }. We refer to a specific column 𝑐𝑖 in table
𝑇 as 𝑇 .𝑐𝑖 , with its cardinality denoted by |𝑐𝑖 |. For simplicity, we
omit the table name when the referenced column is clear from
context. For a table 𝑇 containing a tuple 𝑡𝑖 , we use 𝑡𝑖 [𝑐 𝑗 ] to denote
the value of tuple 𝑡𝑖 in column 𝑐 𝑗 , respectively. Each column 𝑐 𝑗 is
associated with a semantic type, denoted 𝑡𝑦𝑝𝑒(𝑇 .𝑐 𝑗 ), and a set of
values denoted 𝑣𝑎𝑙𝑠(𝑇 .𝑐 𝑗 ).
Query Table.A query table, denoted𝑄 , follows the same structural
form as any 𝑇 ∈ D, but is provided by the user to express their
query. Its tuples, called query tuples (𝑡𝑖 ∈ 𝑡𝑢𝑝(𝑄)), contain example
values illustrating the user’s intent. Each query column 𝑐 𝑗 ∈ 𝑎𝑡𝑡𝑟 (𝑄)
likewise has an associated semantic type 𝑡𝑦𝑝𝑒(𝑄.𝑐 𝑗 ) specified by
the user.

An example query table 𝑄 is illustrated in Figure 1 1 where
𝑎𝑡𝑡𝑟 (𝑄) = {𝑐1, 𝑐2}. For instance 𝑡𝑦𝑝𝑒(𝑄.𝑐1) =“Building Name”, and
𝑣𝑎𝑙𝑠(𝑄.𝑐1) =[“East Building”, “Plasma Fusion Center”].

To support joins between heterogeneous tables with varying
value representations, we use a pre-trained language model [59]
(PLM) to embed attribute values. This enables the system to join
semantically similar values despite syntactic differences. For both
semantic and equi-joins, value matches are defined via vector simi-
larity, as detailed below.

Definition 1 (Semantic Match). Let 𝑢, 𝑣 ∈ U be two strings
(U denotes the universe of string values from data lake columns). Let
𝑒𝑚𝑏 : U → R𝑑 be an embedding function that maps each string to a
𝑑-dimensional ℓ2–normalized vector (∥𝑒𝑚𝑏(𝑥)∥2 = 1), where 𝑑 ∈ N.
Let 𝑠 : R𝑑 ×R𝑑 → [0, 1] be a similarity function, and 𝜃 ∈ [0, 1] be a
similarity threshold. We define the Semantic Match between 𝑢 and 𝑣
as follows:

𝑀𝑠
𝜃
(𝑢, 𝑣) = 1

(
𝑠 (𝑒𝑚𝑏(𝑢), 𝑒𝑚𝑏(𝑣)) ≥ 𝜃

)
(1)

Equation 1 evaluates to 1 if the 𝑒𝑚𝑏(𝑢) and 𝑒𝑚𝑏(𝑣) have a cosine
similarity of at least 𝜃 , and 0 otherwise. We use cosine similarity as
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the similarity function 𝑠 for its proven usage in finding semantically
similar values [17, 22, 53], and we use SBERT [59] as the embedding-
generating model 𝑒𝑚𝑏. Because our goal is to compare the semantic
similarity between individual string values—independent of their
surrounding table context—we selected SBERT as our embedding
model. As shown in our experiments (Section 7), SBERT consis-
tently outperformed several table-aware embedding models, where
contextual table structure provides limited additional signal.

We use Equation 1 to capture both equi-joins and semantic joins.
Setting the threshold 𝜃 = 1 restricts matches to be made only be-
tween values with exactly the same embeddings, which is the case
of equi-joins.

3.2 Column Joinability

Before defining joinability between columns, we define 𝑐𝑖, 𝑗 as the
subset of values in column 𝑐𝑖 that semantically match at least one
value in column 𝑐 𝑗 (𝑖 ̸= 𝑗 ), according to Equation 1. Formally:

𝑐𝑖, 𝑗 = {𝑢 ∈ 𝑐𝑖 | ∃𝑣 ∈ 𝑐 𝑗 such that𝑀𝑠
𝜃
(𝑢, 𝑣) = 1}.

In previous work [21, 22], the semantic joinability from a source
column 𝑐1 to a target column 𝑐2 is defined as follows:

𝑗𝑛𝑠
𝜃
(𝑐1, 𝑐2) =

|𝑐1,2 |
|𝑐1 |

(2)

Note that Equation 2 is asymmetric, meaning that the value of join-
ability changes if the order of columns is reversed- e.g., 𝑗𝑛𝑠

𝜃
(𝑐1, 𝑐2) ̸=

𝑗𝑛𝑠
𝜃
(𝑐2, 𝑐1). This is because previous work only focused on finding

a join between a given source column and a target column. In con-
trast, our focus is on discovering joins across any pair of columns
and tables, i.e., we want the joinability score to be the same between
a pair of columns regardless of their order. To align with this setting,
we propose a symmetric joinability definition that is invariant to
column order and accounts for semantic type similarity.

Definition 2 (Semantic Joinability). Given two columns 𝑐1
and 𝑐2, the semantic joinability between 𝑐1 and 𝑐2 is defined as follows:

𝑗𝑛(𝑐1, 𝑐2) = 𝑗𝑛(𝑐2, 𝑐1) = 𝑀𝑠
𝜃
(𝑡𝑦𝑝𝑒(𝑐1), 𝑡𝑦𝑝𝑒(𝑐2)) ·

1
2
(
|𝑐1,2 |
|𝑐1 |

+
|𝑐2,1 |
|𝑐2 |

) (3)

Equation 3 defines joinability between columns 𝑐1 and 𝑐2 as the
product of their semantic type similarity and the average proportion
of semantically matching values across both directions, ensuring
a balanced and symmetric measure of alignment. Setting 𝜃 = 1
reduces the measure to an equi-join. Unlike prior asymmetric for-
mulations [21, 22], our definition is order-independent— 𝑗𝑛(𝐴, 𝐵) =
𝑗𝑛(𝐵,𝐴)—capturing joinability as a commutative relation consistent
with the symmetry of inner joins.
Join Graph. After introducing semantic joinability, a natural ques-
tion arises: how do we keep track of all columns that are semanti-
cally joinable? To address this, we introduce a join graph—a data
structure that encodes join relationships across tables in the data
lake. This graph serves as the central data structure of SemDisc,
capturing all semantically joinable columns and enabling the ex-
traction of join paths that satisfy a user’s query (Section 6). The
join graph encodes joinability between tables in D. Formally, it is
defined as an undirected graph 𝐺 = (𝑉 , 𝐸) where:

• 𝑉 = {𝑇𝑖 | 𝑇𝑖 ∈ D}, the set of nodes, corresponds to the tables
in the data lake.
• 𝐸 ⊆ 𝑉 × 𝑉 , the set of undirected edges, represents join
relationships between pairs of tables.

Each 𝑒𝑑𝑔𝑒 = (𝑇𝑖 ,𝑇𝑗 ) ∈ 𝐸 such that 𝑖 ̸= 𝑗 is characterized by:
(1) A label 𝑒𝑑𝑔𝑒.𝑙𝑎𝑏𝑒𝑙 = (𝑐𝑖 , 𝑐 𝑗 ), where 𝑐𝑖 ⊆ attr(𝑇𝑖 ) and 𝑐 𝑗 ⊆ attr(𝑇𝑗 )

are the sets of join columns from tables 𝑇𝑖 and 𝑇𝑗 , respectively.
(2) A weight 𝑒𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ∈ [0, 1], where 𝑒𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 is the join-

ability (Equation 3) of 𝑇𝑖 and 𝑇𝑗 using the columns 𝑐𝑖 , 𝑐 𝑗 , i.e.,
𝑗𝑛(𝑐𝑖 , 𝑐 𝑗 )

(3) A type 𝑒𝑑𝑔𝑒.𝑡𝑦𝑝𝑒 ∈ {semantic, equi-join}, which specifieswhether
the edge represents a semantic join or an equi-join.

Definition 3 (Hybrid Join Path). In a join graph 𝐺 = (𝑉 , 𝐸), a
hybrid join path 𝑃 is a simple path connecting a sequence of tables
𝑡𝑎𝑏𝑙𝑒𝑠(𝑃 ) = {𝑇1,𝑇2, . . .}. Consecutive tables 𝑇𝑖 and 𝑇𝑖+1 are joined via
columns 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝑇𝑖 ) and 𝐵 ∈ 𝑎𝑡𝑡𝑟 (𝑇𝑖+1) using either a semantic join
(cosine similarity threshold 𝜃 ∈ [0, 1)) or an equi-join (𝜃 = 1).

Candidate Tables and Columns. For a given query table 𝑄
with 𝑙 columns {𝑄.𝑐1, 𝑄.𝑐2, ..., 𝑄.𝑐𝑙 }, we define the set of their re-
spective best-matching candidate columns from the data lake as
𝐶𝑠𝑒𝑡 (𝑄) = {𝑐1, 𝑐2, ..., 𝑐𝑙 } that are respectively contained in candidate
tables 𝑇𝑠𝑒𝑡 (𝑄) = {𝑇1,𝑇2, ...,𝑇𝑙 }. Let 𝑇 (𝑃 ) be a table generated from a
join path 𝑃 containing all tables 𝑇𝑠𝑒𝑡 (𝑄) projected on the candidate
columns 𝐶𝑠𝑒𝑡 (𝑄) , i.e., 𝑎𝑡𝑡𝑟 (𝑇 (𝑃 )) = {𝑐1, 𝑐2, ..., 𝑐𝑙 }.

Definition 4 (Semantic Tuple Match). We consider a given
query table 𝑄 and a joined table 𝑇 (𝑃 ) materialized from join path 𝑃 .
We say that the materialized table 𝑇 (𝑃 ) satisfies the Semantic Tuple
Match (𝑆𝑇𝑀(𝑄,𝑇 (𝑃 ))) condition for query table 𝑄 if the following
expression is satisfied:

∀ 𝑡 ∈ 𝑡𝑢𝑝(𝑄);∃ 𝑡 ′ ∈ 𝑡𝑢𝑝(𝑇 (𝑃 )) :
𝑙∑︁
𝑖=1

𝑀𝑠
𝜃
(𝑡[𝑐𝑖 ], 𝑡 ′[𝑐𝑖 ]) = 𝑙 (4)

Intuitively, Equation 4 ensures that every tuple in the query
table has at least one semantically similar match in 𝑡𝑢𝑝(𝑇 (𝑃 )). Here,
𝑡𝑢𝑝(𝑄) and 𝑡𝑢𝑝(𝑇 (𝑃 )) denote the sets of tuples in the query table 𝑄
and the materialized table 𝑇 (𝑃 ), respectively. The Semantic Tuple
Match condition holds if and only if every tuple 𝑡 ∈ 𝑡𝑢𝑝(𝑄) has a
corresponding tuple 𝑡 ′ ∈ 𝑡𝑢𝑝(𝑇 (𝑃 )) such that each column value
𝑡[𝑐𝑖 ] semantically matches 𝑡 ′[𝑐𝑖 ] for 𝑖 ≤ 𝑙 .

For example, in Figure 1 1○, the query tuple 𝑡1 = (East Building,
Materials Engineering) is semantically matched with the joined
table tuple (Building East 62, Materials Science and
Engineering) (Figure 1 4○). The joined table’s attributes are pro-
jected and ordered to align with the query columns. As a result,
𝑡1 has a corresponding tuple in the joined table that semantically
matches on all attributes. In fact, both query tuples, 𝑡1 and 𝑡2, have at
least one such matching tuple. Thus, the joined table in Figure 1 4○
satisfies the Semantic Tuple Match condition for query 𝑄 .

3.3 Problem Definition

Our search space consists of join trees – acyclic connected sub-
graphs of the join graph, where each edge represents either a se-
mantic or an equi-join. A join path is a special case of a join tree
restricted to a single path. Thus, our task can be formulated as
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finding a join tree that: (1) maximizes joinability and includes a
given set of candidate tables, and (2) satisfies the Semantic Tuple
Match condition while maximizing tuple cardinality (because we
want to favor join paths that have a higher number of rows). We
formalize these as Problem 1 and Problem 2 below and establish
their hardness.

Problem 1. (Weight-Optimal Join Tree for a Query Table
Problem): Given a query table 𝑄 , we want to compute the join tree
𝑃∗(𝑄) (𝑃∗, for short) such that: (1) 𝑃∗ maximizes the sum of edge
weights from the join graph (because we want to include the most
joinable tables); (2) 𝑃∗ contains all the tables in 𝑇𝑠𝑒𝑡 (𝑄);(3) 𝑃∗ may
contain other tables that are not in 𝑇𝑠𝑒𝑡 (𝑄) (hidden tables), but are
necessary to join all the tables in 𝑇𝑠𝑒𝑡 (𝑄); and (4) The total count of
tables in 𝑃∗ does not exceed a budget table count L.

Here, 𝑇 (𝑃∗) is the materialized table of 𝑃∗ projected on the can-
didate columns𝐶𝑠𝑒𝑡 (𝑄), and the projected columns follow the same
order as the columns of query 𝑄 .

Proposition 1. Problem 1 is NP-Hard by reduction from the
Minimum-Weight Steiner Tree problem (proof in Appendix A.1).

Problem 2. (Optimal Join Tree for a Query Table Problem):
We extend Problem 1 by requiring the Semantic Tuple Match condition
to hold and, among all weight-optimal trees, maximize the tuple
cardinality of the returned join tree. Formally, find a join tree 𝑃∗ such
that (i) it satisfies the weight-optimality conditions (Problem 1), (ii)
𝑆𝑇𝑀(𝑄,𝑇 (𝑃∗)) holds (𝑇 (𝑃∗) is the join tree materialization), and (iii)
|𝑇 (𝑃∗)| (tuple cardinality) is maximized.

Proposition 2. Problem 2 is NP-Hard because Problem 1 is a spe-
cial case of Problem 2, making Problem 2 NP-Hard. Proof by restriction
(full proof in Appendix A.2). □

Because enumerating all join trees is computationally expensive,
SemDisc focuses on join paths– a constrained subset of join trees.
We introduce heuristics to efficiently identify high-quality join
paths—those that yield non-empty results and high column-level
joinability (Section 6).

3.4 System Overview

Figure 2 illustrates the workflow of SemDisc. We divide the archi-
tecture into two phases: (1) Offline Phase: This is where SemDisc
efficiently computes the join graph (Figure 2 1○) where SemDisc
ingests a data lake of tables, leverages an LLM to annotate data
lake columns with descriptive semantic types, and approximates
semantic joinability between columns. To enable efficient join path
search, SemDisc constructs an index (Figure 2 2○) by first building a
join graph with semantic and equi-join edges, applying qualitative
pruning to retain high-quality edges, and then creating an Inverted
Join Path Index for fast retrieval of join paths. (2) Online Phase: In
this phase (Figure 2 3○), the user submits a query table, and SemDisc
matches the query table’s example values and semantic types with
data lake tables. SemDisc then applies a novel heuristic to semanti-
cally match query tuples with tuples from the joined paths without
materializing them. SemDisc then queries the Inverted Join Path
Index to get the top-k join paths that contain the candidate tables,
along with hidden tables if needed. Next, we describe the building
blocks of SemDisc in detail.

Figure 2: Architecture of SemDisc: 1 Build join graph→
2 Index join paths→ 3 Retrieve top-𝑘 join paths.

4 EFFICIENTLY COMPUTING THE JOIN

GRAPH

Constructing a join graph over large data lakes is costly, requir-
ing joinability checks across many column pairs and managing
numerous edges. We propose efficient, sketch-based methods to
estimate semantic column joinability and reduce graph complex-
ity. Figure 2 1 illustrates this offline step. Section 4.1 describes
semantic type extraction, and Section 4.2 details our joinability
approximation techniques.

4.1 Semantic Type Augmentation

What if two columns have a high overlap of values but refer to
different real-world entities? For instance, columns student_id
and part_id might share many values but do not refer to the same
real-world entity, and thus cannot be joined. Tomakematters worse,
we cannot rely on the column headers to be descriptive. To solve
this problem, we resort to semantic type annotation of all columns
in the data lake. Column type annotation is an active research
area [33, 63, 68]. SemDisc augments all the data lake columns with
LLM-generated semantic types. We prompt GPT-4o [7] with sample
values from the data lake columns and other co-occurring columns
in the same table (to give it context). The LLM then provides sug-
gested semantic types for each column.

The prompt for the LLM to extract semantic types of the columns
in a table has the following structure:
● Instruction: An instruction elaborating that the LLM needs to
find the semantic types of the columns in a table.
Below is a list of column ids and a sample of their

values separated by commas from a table. Give detailed

elaborate semantic type for each column in the

following format:

●Output Format: The structure of the output list containing the
column header and semantic type in each list item.
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[{"id": columnid1, "semantictype":typename1},

{"id": columnid2, "semantictype":typename2}, ...]

● Input Columns: The columns are listed one by one with their
header value and a sample of the 20 most occurring values.
id: <COLUMN_HEADER>

sample values: <SAMPLE_VALUES>,

For an example prompt, refer to Appendix B.

4.2 Approximating Semantic Joinability

To build hybrid join paths, SemDisc calculates the joinability be-
tween columns for both semantic and equi-joins using the same
framework, which allows SemDisc to leverage a single unit of mea-
surement to evaluate the quality of edges in the join graph for
both semantic and equi-joins. SemDisc computes semantic edges
in the join graph 𝐺 for all pairs of tables with semantically join-
able columns. These semantic edges capture relationships between
columns based on their content similarity. To efficiently estimate
the semantic joinability of two columns 𝑐1 and 𝑐2 from tables 𝑇1
and 𝑇2 respectively, SemDisc follows a three-step process, allowing
both semantic and equi-joinable edges in the same graph:

(1) SimHash Generation: For each value in columns 𝑐1 and 𝑐2,
SemDisc generates a SimHash [13] value of its vector embedding.
SimHash is a locality-sensitive hashing (LSH) technique that maps
similar high-dimensional embeddings into the same subspace. Using
SimHash, SemDisc ensures that similar embeddings (i.e., column
values) are assigned the same hash value.

To generate the SimHashes of values for a given data lake, SemDisc
generates a fixed set of 𝑏 random hyperplanes, where the length
of each hyperplane is equal to the length 𝑑 of each embedding
extracted from data lake values by the embedding model. Formally,
the hyperplanes are ℎ1, ℎ2, ..., ℎ𝑏 ∈ R𝑑 . Each data lake embedding
is projected on these hyperplanes, assigning 0 or 1 for each of the
𝑏 hyperplanes. Each embedding of the values in the data lake is
encoded into a SimHash of bit count 𝑏, e.g. Materials Science
and Engineering is encoded into 01110111 where the value of 𝑏
is 8. Semantically joinable values are likely to be close to each other
in the vector space, and hence likely to be assigned the same hash
value, reducing the problem of finding semantically joinable value
pairs to finding equi-joinable value pairs between two columns. For
example, MATS SCI & ENG is encoded into the same SimHash value
01110111 as Materials Science and Engineering.

Now, the SimHash values can be joined using equality between
them, allowing us to build hybrid paths where we can evaluate
the join paths for both semantic and equi-joins. The procedure of
selecting the SimHash bit count 𝑏 for a given cosine similarity is
described in the experiments section (Section 7.3).

(2)MinHash Signature Computation: To summarize the set
of SimHash values generated for 𝑐1 and 𝑐2, SemDisc computes a
fixed-size MinHash signature [11] for each column. MinHash is
a popular LSH technique used to estimate the Jaccard similarity
between sets efficiently. It works by creating compact, fixed-size
signatures that approximate the extent of overlap between two sets.

(3) Approximate Semantic Joinability: Finally, SemDisc cal-
culates the Jaccard similarity between the MinHash signatures of 𝑐1

and 𝑐2 to approximate the joinability of Equation 3. The Jaccard sim-
ilarity estimates the overlap of SimHashes between two columns.
Formally, this process is summarized as follows:

𝑤 (𝑐1, 𝑐2) = 𝐽 (𝑚𝑖𝑛ℎ𝑎𝑠ℎ(𝑠𝑖𝑚ℎ𝑎𝑠ℎ(𝑐1)),𝑚𝑖𝑛ℎ𝑎𝑠ℎ(𝑠𝑖𝑚ℎ𝑎𝑠ℎ(𝑐2))) (5)

𝐽 denotes the Jaccard similarity, 𝑠𝑖𝑚ℎ𝑎𝑠ℎ(𝑐) denotes the list of
SimHash values of column 𝑐 . For non-string columns, we ignore
the SimHash encoding layer and directly use the column values
to create the MinHash signatures per column. The weight𝑤 (𝑐1, 𝑐2)
corresponds to the undirected join edge 𝑒 in the join graph connect-
ing tables 𝑇1 and 𝑇2, with label (𝑐1, 𝑐2) denoting the pair of columns
involved in the join. The higher the value of 𝑤 (𝑐1, 𝑐2), the more
joinable 𝑐1 and 𝑐2 are in the case of both equi-join and semantic join
edges. Now, we have a join graph containing both semantic join
and equi-join edges, where weights capture the degree of joinability
between two columns, allowing us to build hybrid join paths that
contain both types of edges.

Time Complexity. Using SimHash reduces the time complexity
of finding semantically similar value pairs between two columns.
Calculating joinability between a column pair 𝑐1, 𝑐2 directly using
embeddings has a time complexity of O(|𝑐1 |·|𝑐2 |·𝑑). Calculating
joinability using the MinHash signature pair that was generated
from the SimHashes has a total time complexity of O((|𝑐1 |+|𝑐2 |) ·
𝑚 +𝑚), where 𝑂((|𝑐1 |+|𝑐2 |) ·𝑚) is required for hashing the values
of 2 columns using𝑚 hash functions. 𝑂(𝑚) is the time required to
evaluate the Jaccard similarity between two MinHash signatures
of size𝑚. The final time complexity is 𝑂((|𝑐1 |+|𝑐2 |) ·𝑚) which is
significantly lower than O(|𝑐1 |·|𝑐2 |·𝑑) since𝑚 << 𝑑 .

5 INDEXING JOIN PATHS

The join graph 𝐺 may contain O(
( |D |

2
)
·𝐶𝑚𝑎𝑥

2) edges, where |D|
is the number of tables in the data lake and 𝐶𝑚𝑎𝑥 is the maximum
count of columns in a table. For example, in one of the data lakes
we evaluated (OpenData dataset of LakeBench [19]), the join graph
contained over 1.7 million edges (Table 4 f○). This makes finding
join paths (simple paths in the graph) computationally expensive.
We outline strategies to significantly reduce the edge count in the
join graph by removing low-quality edges (Figure 2 2○).

5.1 Qualitative Edge Pruning

SemDisc applies Algorithm 1 to prune join edges based on multiple
signals. For each table pair 𝑇𝑖 ,𝑇𝑗 (vertices in 𝐺), and their corre-
sponding set of edges 𝑒𝑑𝑔𝑒𝑠(𝑇𝑖 ,𝑇𝑗 ) (line 4), SemDisc retains only the
top-ranked edge based on edge weight (lines 10–11). The pruning
process consists of two main stages:
(1) Semantic Type Similarity (line 5): SemDisc evaluates whether
the semantic types of column 𝑐𝑖 and 𝑐 𝑗 are similar by computing the
cosine similarity between their LLM-generated type embeddings,
using the similarity threshold 𝜃 (Equation 1).
(2) Value Joinability (line 7): SemDisc checks if the approximate
semantic joinability score between columns 𝑐𝑖 and 𝑐 𝑗 (as defined in
Equation 5) meets or exceeds a threshold 𝜃 𝑗 . Only the top-ranked
edge is retained, and all others are discarded via the 𝑝𝑟𝑢𝑛𝑒_𝑒𝑑𝑔𝑒𝑠
function (line 11).
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Algorithm 1: Join Graph Pruning
Input:𝐺 (the join graph)
Output: Pruned join graph

1 for table pair𝑇𝑖 ,𝑇𝑗 in𝐺 do

2 Initialize 𝑏𝑒𝑠𝑡_𝑒𝑑𝑔𝑒𝑠 ← []
3 𝑒𝑑𝑔𝑒_𝑟𝑎𝑛𝑘𝑠 ← []
4 for u(column 𝑐𝑖 , column 𝑐 𝑗 ) in 𝑒𝑑𝑔𝑒𝑠(𝑇𝑖 ,𝑇𝑗 ) do
5 if 𝑀𝑠

𝜃
(𝑡𝑦𝑝𝑒(𝑐𝑖 ), 𝑡𝑦𝑝𝑒(𝑐 𝑗 )) = 0 then

6 continue

7 if 𝑤(𝑐𝑖 , 𝑐 𝑗 ) ≥ 𝜃 𝑗 then

8 𝑏𝑒𝑠𝑡_𝑒𝑑𝑔𝑒𝑠 ← 𝑏𝑒𝑠𝑡_𝑒𝑑𝑔𝑒𝑠 ∪𝑢
9 𝑒𝑑𝑔𝑒_𝑟𝑎𝑛𝑘𝑠[𝑢]← 𝑤(𝑐𝑖 , 𝑐 𝑗 )

10 𝑡𝑜𝑝_𝑒𝑑𝑔𝑒 ← 𝑢∗ where 𝑒𝑑𝑔𝑒_𝑟𝑎𝑛𝑘𝑠[𝑢∗] has the maximum value
among edges in 𝑒𝑑𝑔𝑒_𝑟𝑎𝑛𝑘𝑠

11 𝐺 ← 𝑝𝑟𝑢𝑛𝑒_𝑒𝑑𝑔𝑒𝑠(𝑏𝑒𝑠𝑡_𝑒𝑑𝑔𝑒𝑠,𝑢∗)
12 return𝐺

Building the Join Paths. After pruning the join graph, SemDisc
generates all possible join paths P = {𝑃1, 𝑃2, ...}, which correspond
to simple paths in the join graph 𝐺 , between all the pairs of nodes
of𝐺 where the simple paths have at most L nodes. |P | is the count
of join paths and each join path 𝑃𝑖 ∈ P (𝑖 ≤ |P|) is a simple path in
𝐺 , i.e., the vertices traversed in a simple path in𝐺 . The join paths in
P are not guaranteed to have a non-zero tuple count (cardinality).
Therefore, SemDisc performs cardinality estimation to filter out join
paths that produce zero tuples from a large collection of join paths.
As cardinality estimation is a well-studied problem [6, 41, 45, 45–
47, 62, 67, 70, 71] and not the focus of our contribution, we adopt
an existing sampling-based cardinality estimation technique [48].
Since semantic joins are reduced to equi-joins using SimHash, esti-
mating cardinality for hybrid paths becomes possible using existing
cardinality estimation techniques for equi-joins. The estimated car-
dinality is used as a quality signal for a join path, i.e., the more
tuples a join path yields, the better.

5.2 Building the Inverted Join Path Index

Going from a set of candidate tables (data lake tables with values
or types that match those in the query table) to a join path requires
searching for all join paths in P that contain the candidate tables
(and possibly intermediate tables needed to join the candidate tables
with each other). We formally define the Join Path Query problem
as follows:

Definition 5. (Join Path Query): Given a set of candidate tables
for a query 𝑄 , 𝑇𝑠𝑒𝑡 (𝑄) ={𝑇1,𝑇2, ...,𝑇𝑙 }, we want to find all the join
paths 𝑃𝑚𝑎𝑡𝑐ℎ ⊂ P, such that for every path 𝑃 ∈ 𝑃𝑚𝑎𝑡𝑐ℎ : 𝑇𝑠𝑒𝑡 (𝑄) ⊂
𝑡𝑎𝑏𝑙𝑒𝑠(𝑃 ) .

Naively, we could solve the Join Path Query problem using a lin-
ear search over P, where, for each path of at most size L, we check
whether 𝑙 candidate tables exist in that path. This approach has a
time complexity of𝑂(𝑙 · L · |P|). Instead, to quickly find all the join
paths containing a set of tables, SemDisc builds the Inverted Join
Path Index offline to enable answering join path queries efficiently.

The Inverted Join Path index is a binary matrix with a row for
each table in D and a column count equal to the number of simple
paths in P. Each column represents a join path from P, and each

Figure 3: Illustration of querying the Inverted Join Path Index

to get join paths having all the candidate tables.

row represents a table from D. SemDisc builds the Inverted Join
Path Index as follows:

(1) SemDisc initializes a matrix with dimension |D|×|P| with all
zero entries.

(2) For each table𝑇𝑖 (𝑖 ≤ |D|) in a given join path 𝑃 𝑗 in P, SemDisc
locates the row in the inverted index (𝑖𝑡ℎ row among |D| rows),
and sets the column 𝑗 of that row to 1.

To find all join paths consisting of a set of candidate tables,
SemDisc first retrieves the rows corresponding to the candidate
tables from the Inverted Join Path Index. From the selected rows,
SemDisc searches for the columns that have all 1s in them. From
those columns, SemDisc returns the corresponding join paths con-
taining the candidate tables (details in Section 6.3).
Example 2.We show an example of an Inverted Join Path Index
in Figure 3. A cell value is 1 if the corresponding table is in the
respective join path. For example, the cell value 1 marked in green
in Figure 3 indicates that table 𝑇3 is found in Path 4. The cell value
0 marked in red indicates that 𝑇4 does not exist in Path 2.

To answer a join path query from the Inverted Join Path Index of
Figure 3, say we want to find the join paths that consist of candidate
tables𝑇1,𝑇3, and𝑇5. SemDisc first selects the rows corresponding to
these tables (highlighted in orange), and among those rows, finds
the columns that have all 1s in them (highlighted in blue). Notice
that Path 3 consists of candidate tables 𝑇1,𝑇3,𝑇5 with an additional
table 𝑇2, which is not a candidate table, but it is a hidden table
needed to build Path 3. We conclude that Path 3 consists of all the
tables 𝑇1,𝑇3, and 𝑇5 with an additional hidden table 𝑇2.

Time Complexity. The time complexity for building the Inverted
Join Path Index is O(|P |·L) because SemDisc has to iterate over all
|P | paths and each path has at most L tables, where L is the maxi-
mum allowed table count to build the join path. Time complexity
of querying the Inverted Join Path Index is given in Section 6.3.

6 ANSWERING QUERIES

When a query table 𝑄 is submitted in the online phase, SemDisc
must efficiently identify the most relevant join paths. As shown in
the system architecture (Figure 2 3 ), this process begins by retriev-
ing a set of candidate tables for each query column, as described in
Section 6.1. Next, SemDisc constructs candidate paths by combin-
ing these tables and ranks them to prioritize those most likely to
satisfy the semantic tuple match condition (Section 6.2). Finally, in
Section 6.3, we present how SemDisc queries the Inverted Join Path
Index to retrieve join paths that include the tables in each candidate
path.
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6.1 Searching for Candidate Tables

For each column 𝑐𝑖 ∈ 𝑎𝑡𝑡𝑟 (𝑄), the objective of SemDisc is to find the
top tables consisting of a column described by 𝑐𝑖 . For each column
𝑄.𝑐𝑖 , SemDisc fetches the top 𝜆 data lake columns that best match
query column 𝑄.𝑐𝑖 using Algorithm 2.

Algorithm 2: Get Candidate Columns for Query Columns
Input :Query table𝑄 : 𝑎𝑡𝑡𝑟 (𝑄) = {𝑐1, . . . , 𝑐𝑙 }, number of candidates 𝜆
Output :List of candidate column sets CsetList(𝑄)

1 𝐶all ← [ ]
2 for 𝑖 = 1 to 𝑙 do
3 𝐶𝑖 ← HNSW_ANN(emb(type(𝑄.𝑐𝑖 )), 𝜆)
4 𝐶′𝑖 ← []
5 foreach 𝑐 ∈ 𝐶𝑖 do

6 /* Checking if the values in the query table are

semantically contained in a candidate column c */

7 if 𝑠𝑒𝑡 (simhash(𝑄.𝑐𝑖 )) ⊆ 𝑠𝑒𝑡 (simhash(𝑐)) then
8 Append 𝑐 to𝐶 ′𝑖

9 Append𝐶′𝑖 to𝐶all

10 CsetList(𝑄)← Cartesian product of column lists in𝐶all
11 return CsetList(𝑄)

Filtering Candidate Columns. SemDisc identifies candidate
columns by retrieving the top-𝑘 approximate nearest neighbors
(ANN) for each query column’s semantic type embedding using
HNSW [52] for efficient similarity search [51, 52, 54] (line 3, Algo-
rithm 2). It then filters out columns whose precomputed SimHashes
(Section 4.2) do not overlap with those of the query’s example val-
ues (line 7), ensuring that all retained columns are semantically
similar to the query values. The resulting column lists are combined
via a Cartesian product to form CsetList(𝑄), capturing all candidate
column combinations to be evaluated through the Inverted Join
Path Index. In the next step, SemDisc ranks these combinations
to prioritize those most likely to yield joined tuples matching the
query table tuples. Refer to Appendix D for the time complexity
analysis of Algorithm 2.

6.2 Path Ranking for Semantic Tuple Matching

Each 𝐶set(𝑄) ∈ CsetList(𝑄) contains one candidate column per
query column, drawn from different data lake tables. To avoid
materializing all join paths, which is computationally expensive,
SemDisc uses a fast scoring heuristic (Algorithm 3) that assigns
a reward to each 𝐶set, estimating the likelihood that it will satisfy
the semantic tuple match condition (Definition 4). The heuristic
operates as follows: (1) Columns in𝐶set are grouped by their source
tables (line 2). (2) Groups with only one column are ignored, as they
do not contribute to tuple-level matches (line 4). (3) For each group
and each query tuple 𝑡 , the algorithm computes the intersection of
SimHash index sets across all group columns to find if query table
tuples have a partial match with data lake tuples (lines 7-8). (4) If
any tuple yields an empty intersection, the candidate set is marked
as invalid (line 9). (5) Otherwise, the group contributes one point
to the overall reward (line 13-14).

Only valid candidate sets are retained, and each is assigned its
final reward score. SemDisc then ranks all valid 𝐶set(𝑄) entries by
their reward. Each𝐶set(𝑄) = {𝑐1, . . . , 𝑐𝑙 } corresponds to a candidate

path 𝑇set(𝑄) = {𝑇1, . . . ,𝑇𝑙 }, and the collection of all 𝑇set sets defines
the join path search space considered in the next phase.

Algorithm 3: Semantic Tuple Match
Input: List of candidate column sets CsetList(𝑄) for query table𝑄
Output: Each candidate set assigned a reward or discarded

1 foreach𝐶set(𝑄) ∈ CsetList(𝑄) do
2 Group columns in𝐶set(𝑄) by table ID into groups; reward← 0;

valid← True
3 /* Evaluate each group of tables */

4 foreach group𝐺 in groups with |𝐺 |> 1 do
5 foreach tuple 𝑡 in𝑄 do

6 idx← all tuple indices of table(𝐺 )
7 foreach column 𝑐 ∈ 𝐺 do

8 𝑞 ← query column for 𝑐
idx← idx ∩ index_set(𝑡[𝑞], 𝑐)

9 if idx = ∅ then
10 valid← False

11 if valid then
12 // There is a partial tuple match

13 reward← reward + 1

14 if valid then
15 Assign reward to𝐶set(𝑄)
16 else

17 Remove𝐶set(𝑄) from CsetList(𝑄)

18 Sort CsetList(𝑄) by reward (descending)

Example 3. Figure 4 illustrates reward-based path ranking. In
path 1, all columns come from different tables, forming only single-
column groups; no reward is assigned, so the total score is zero.
Path 2 includes two columns from the same table (Buildings), form-
ing a multi-column group. Intersecting their SimHash index sets
across query tuples yields non-empty results, giving a reward of 1.
Hence, SemDisc prioritizes path 2 over path 1 as it better preserves
semantic matches with the query table.

Time Complexity. In Algorithm 3, for a single candidate column
set 𝐶set(𝑄), grouping columns in line 2 takes 𝑂(𝑙) where 𝑙 is the
query column count. For a 𝐶set(𝑄), the worst case occurs when all
query columns are matched from the same table, for which line 4
iterates only once. Line 5 iterates 𝑟 times, 𝑟 being the query table
tuple count. If all candidate columns originate from the same table,
line 7 iterates 𝑙 times. Set intersection takes O(|𝑇 |) where 𝑇 is the
table of the group and |𝑇 | is the cardinality of 𝑇 . Therefore, the
total time complexity for one 𝐶set(𝑄) becomes O(𝑟 · 𝑙 · |𝑇 |).

6.3 Querying the Inverted Join Path Index

SemDisc uses the Inverted Join Path Index to answer join path
queries for each candidate table set (tables that correspond to the
candidate columns in CsetList(Q) in Algorithm 2). In addition to
the Inverted Join Path Index, SemDisc maintains a hash map that
maps each data lake table to the list of join paths that contain
that table. Given a set of candidate tables 𝑇set(𝑄), SemDisc gets the
join paths containing 𝑇set(𝑄) as follows: (1) Select the rows of the
Inverted Join Path Index that correspond to each candidate table
and additionally, find the candidate table𝑇 ′ ∈ 𝑇set(𝑄) for which the
path count from the hash map is minimum. (2) Among the columns
in the inverted index corresponding to the paths of 𝑇 ′, select the
columns containing all 1’s in the selected rows. (3) Extract the
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Figure 4: Demonstration of Algorithm 3 on two candidate

paths.

corresponding join paths. (4) Materialize the top-𝐾 paths, projecting
only the columns relevant to the query table 𝑄 .

Time Complexity. The time complexity of querying the Inverted
Join Path Index is O(𝑙 · min

𝑇 ∈𝑇set(𝑄)
|{𝑃 |𝑃 ∈ P and 𝑇 ∈ 𝑃}|). 𝑙 is the time

required to check whether a column has all 1’s in the selected rows.
The last term of the time complexity is the number of paths for
table 𝑇 ′ in the hash map, where 𝑇 ′ ∈ 𝑇set(𝑄) is the table containing
the least number of paths in the hash map among the tables of
𝑇set(𝑄).

7 EXPERIMENTAL STUDY

In this evaluation study, we answer the following research ques-
tions:
●RQ1: How effective is SemDisc in finding the correct join paths
for a given query table (Section 7.1)?
●RQ2: How do different embedding models perform at QbE join
path discovery (Section 7.1)?
●RQ3: How efficient is SemDisc in returning join paths for a given
query table (Section 7.2)?
●RQ4:What are the best hyperparameters for SemDisc (Section 7.3)?

Datasets. We evaluate SemDisc on real-world data lakes and three
benchmarks: the Text-to-SQL workload Spider [73], the data discov-
ery benchmark LakeBench [19], and the large relational collection
SchemaPile [20]. Statistics are shown in Table 2. All real-world data
lakes lack explicit schemas—only column names are available, and
no relationships are known.

SchemaPile (SCP) contains 22,989 databases (34.9K tables with
data, 109K PK–FK links) across multiple domains; we use the public
SchemaPile-perm version. Spider (SP) includes 200 databases, of
which 156 contain join queries (Table 3). For both, we remove PK–FK

relationships to test systems’ ability to recover joinswithout schema
hints, using the original schemas as ground truth. LakeBench (LB)

provides ground-truth joinable column pairs from its OpenData
dataset.

We also include four real-world data lakes:DrugCentral (DC) [64],
an online pharmacological database;MITDataWarehouse (MD) [2],
a centralized institutional data repository; and two from data.gov [1]:
U.S. Fish and Wildlife Service (FWS) with ecological and geo-
graphic datasets, and Centers for Disease Control and Preven-

tion (CDC) with public health records on disease, mortality, and
drug usage.

Table 2: General statistics of the datasets.

Data Lake Table
Count

Tuple
Count

Column
Count

Mean Tuple
Count

Mean
Column
Count

SchemaPile (SCP) 34.9K 1.06M 1.33M 28.66 7.00
Spider (SP) 802 73,164 4,097 91.23 5.11
LakeBench (LB) 500 491,352 10,229 982.70 20.46
DrugCentral (DC) 69 52,993 443 768.01 6.42
MITDWH (MD) 167 86,883 1,930 520.26 11.56
CDC 467 354,980 10,112 843.18 24.02
FWS 256 99,884 5,211 401.14 20.93

Table 3: Statistics of Spider (left) and distribution of join-path

lengths (right).

Individual Database Count 156
Total Join Queries 6464

Total Unique Join Sequences 768
Max Table Count in a Join 5

Mean Join Path Per Database 4.076
Maximum Paths in a Database 22

Path Length Join Path Count
2 452
3 164
4 21
5 3

Metrics. For a given query table, we measure the ability of various
baselines to return the joined table that semantically matches the
query table. Following previous work [40, 66], we use the precision-
at-K metric (P@K) aggregated over all query tables. For a set of
queries Q, we calculate P@K as follows:

𝑃@𝐾 =
|{𝑄 ∈ Q|∃𝑃 ∈ top K paths for 𝑄 : 𝑆𝑇𝑀(𝑄,𝑇 (𝑃 ))}|

|Q| (6)

𝑃@𝐾 is the fraction of all queries for which at least one of the
top 𝐾 paths satisfies the Semantic Tuple Match condition.

We also conducted a series of experiments to evaluate the per-
formance of SimHash approximation using the F1 score. The F1
score is defined as:

F1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
(7)

where 𝑇𝑃 , 𝐹𝑁 , and 𝐹𝑃 denote the number of true positives, false
negatives, and false positives, respectively. They are defined sepa-
rately for each experiment in which the F1 score is reported.

Baselines. We compare SemDisc against the following data discov-
ery systems:Gen-T [26] reconstructs a source table from a data lake
by discovering related tables through SPJU (Select– Project– Join–
Union) operators such as outer union, projection, and subsump-
tion. It assumes, as part of the query table, a unique key column
for joins, which we provide. DataXFormer [5] performs example-
driven transformation discovery by finding a join from a set of
source columns to a given target column. Ver [37] is the state-of-
the-art QbE join discovery system supporting equi-joins only; we
use its default hop count of two.WarpGate [17] discovers semantic
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Figure 5: P@K plots for 11 baselines across 3 equi-join workloads and 7 semantic join workloads.

joins via SimHash-based similarity. For QbE, we encode each query
column, retrieve the top-10 candidate tables, and test the first 𝐾
combinations for joinability. DeepJoin [22] fine-tunes a language
model to find semantically joinable columns; we follow the same
top-10/𝐾-combination procedure as for WarpGate. TaBERT [72],
TURL [18], and Starmie [27] are Transformer-based table encoders
capturing column, row, and text relations. We substitute SBERT in
SemDisc with each model (SemDisc +TaBERT, SemDisc +TURL,
SemDisc +Starmie) to assess effectiveness; SemDisc +SBERT is the
default. Ver+DeepJoin and Ver+WarpGate are hybrid baselines
combining Ver’s join-graph traversal with DeepJoin’s fine-tuned or
WarpGate’s SimHash-LSH joinability models.

Workload. We evaluate the baselines using query table set Q in
an end-to-end manner for each data lake. We generate these query
table sets for two types of joins: 1) Equi-join, and 2) Semantic join.
Equi-join Workload:We use three benchmark workloads from
Spider, LakeBench and SchemaPile since they all come with join
paths: (1) Spider: We sample join queries spanning 156 databases,
using 5 random rows from each result as query tables. These SQL
queries serve as ground truth, providing the exact join paths.
(2) LakeBench: Since LakeBench only includes ground truth for
two-table joins, we construct longer join paths transitively (e.g.,
A joins with B, then B with C, etc.). These join paths serve as the
ground truth path for query table generation. (3) SchemaPile: We
build join paths spanning across 22,989 databases using 109,092
PK-FK relationships given in the benchmark. Query tables are built
using 5 random rows and 2 to 5 random columns from each materi-
alized join path. We refer to these equi-join workloads as SP*, LB*,
and SCP* for Spider, LakeBench, and SchemaPile, respectively.
Semantic JoinWorkload.Webuild the ground-truth join graph by
computing cosine similarity between all value embeddings (Equa-
tion 3), yielding exact tuple-level semantic edges. From this graph,
we sample 100 join paths (≤10M rows), materialize them, and select
2–5 columns per path, including at least one from the first and last

tables to hide intermediates. Each query table contains five sam-
pled rows with LLM-assigned semantic types. Similarity thresholds
and parameters are listed in Table 4. We generate semantic join
workloads for all datasets in Table 2 and refer to them by their
acronyms (e.g., CDC for the CDC dataset, SP for Spider, LB for
LakeBench, and SCP for SchemaPile). SemDisc ’s join path index
is built from all join paths using sketch-based edges (MinHash,
SimHash; Section 5); random sampling occurs only when forming
Q for evaluation. P@K experiments test whether, given a query
table derived from a sampled ground-truth join path, SemDisc re-
trieves top-𝑘 paths satisfying the Semantic Tuple Match condition
(Definition 4). Real-world examples with hidden tables are shown
in Appendix C.

System setup. All experiments are conducted on a Linux-based
high-performance machine with 400 GB RAM, 40 2.75 GHz AMD
EPYC 9454 CPU cores, and an NVIDIA A800 GPU.

7.1 End-to-end Evaluation

This experiment evaluates the baselines in answering query tables
using the top-𝐾 join paths. We compute 𝑃@𝐾 (Equation 6) across
datasets and report results in Figure 5.

Comparison of Equi-join Baselines. Across the three equi-
join workloads (SP*, LB*, SCP*) in Figure 5, SemDisc achieves the
highest P@K over equi-join baselines Ver, Gen-T, and DataXFormer,
even though these benchmarks contain only PK–FK joins and no
semantic edges. SBERT+SimHash maps syntactically identical value
pairs to the same SimHash and MinHash sketches, which creates
the equi-join edges. Join paths that match the query table are then
retrieved from the inverted join-path index.

In contrast, after detecting candidate tables for each query col-
umn, Ver arbitrarily orders candidate tables before exploring join
paths with a fixed hop count, missing the correct paths. Gen-T
assumes an explicit ID column as the first query attribute; if absent,
it performs a greedy search to locate one. In data lakes, this often
fails because no feasible join path exists to a table containing that
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Figure 6: Online phase runtime for all baselines.

ID, causing incomplete tuple recovery. DataXFormer assumes all
input columns reside within a single table and enforces one-to-one
functional dependencies. Since real query tables may span multiple
tables and require many-to-many joins, DataXFormer can only re-
cover limited join paths. SemDisc removes these constraints and
does not assume any initial order of tables in a target join path, and
fetches the best join path that matches the query table from the
join path index.

Comparison of Semantic-join Baselines. In Figure 5, compet-
ing semantic join baselines underperform even with the semantic
join workloads compared to SemDisc primarily due to the poor
initial selection of candidate tables. DeepJoin and WarpGate embed
entire columns using fine-tuned language models, but query tables
contain only a few example values (five), yielding weak context and
poor candidate column alignment. Both systems also fail to verify
tuple-level matches between query and join-path results, as both
models operate at the column-level granularity. Ver+WarpGate and
Ver+DeepJoin combine Ver’s join-graph traversal with semantic
joinability models, but still impose arbitrary table-pair orderings
to find a join path, which lowers precision. In contrast, SemDisc
explores join paths without a fixed ordering, allowing for optimal
candidate table alignment and a higher number of semantically
valid joins.

Comparison of Embedding Models. As shown in Figure 5,
SemDisc +SBERT consistently outperforms SemDisc +TaBERT,
SemDisc +TURL, and SemDisc +Starmie.

TaBERT underperforms because it was pretrained for text-to-
SQL tasks, where it jointly encodes tables and natural-language
utterances. In our setting, where the input is a query table rather
than text, TaBERT lacks the contextual grounding its encoder ex-
pects, resulting in weaker representations for Query-by-Example
(QbE) join discovery.

TURL performs better than TaBERT since its pretraining tasks—
entity linking and type annotation—are closer to joinability rea-
soning [22]. However, it was not fine-tuned to perform join path
discovery from input tables.

Starmie, in turn, produces column-level embeddings optimized
for unionability rather than joinability. When used within SemDisc,

Starmie’s column-contrastive training yields noisier, less discrimi-
native cell-level embeddings, making tuple-level semantic matching
unreliable. Even adapting SemDisc to use Starmie’s per-column
vectors would still require cell-level embedding comparisons during
materialization, negating efficiency benefits.

By contrast, SBERT combined with SimHash offers both seman-
tic fidelity and scalability. SimHash (1) converts SBERT’s semantic
similarity into exact-value lookups, (2) supports standard cardinal-
ity estimation during join-path indexing by treating semantically
similar pairs as equi-joinable (because they would have the same
SimHash code), (3) enables MinHash-based column signatures for
fast joinability estimation, and (4) simplifies path ranking under
the Semantic Tuple Match criterion.

SemDisc leverages semantic types to narrow candidate columns,
applies SimHash pruning for scalable matching, and prioritizes join
paths that preserve query-table tuples. These design choices yield
higher precision in semantic tuple matching than all competing
baselines.

We omit Ver+DeepJoin results on the SP query set due to ex-
ceeding the 400 GB memory limit. Gen-T results on CDC and LB
are also excluded as execution surpassed the 24-hour limit. Gen-T
retrieves only one table per query, and DataXFormer guarantees
that any retrieved path, if it exists, includes the tuples of the query
tables. Therefore, we do not report P@K for K = 10, 15, 20, since
these are identical to P@5 for both methods.

DC MD FWS CDC SP LB SCP
a○ Offline Phase Time
(minute) 1 36 105 87 73 41 212

b○ Ground
Truth Parameter

𝜃 0.90 0.90 0.90 0.90 0.90 0.90 0.90

c○ SemDisc Parameter
𝜃 𝑗 0.50 0.50 0.70 0.99 0.60 0.99 0.70
𝜆 20 30 30 30 20 30 20
𝑏 18 16 20 16 18 20 18

d○ Total Join Paths 2.7K 3.8M 6.3M 2.7M 0.6M 9.6M 25.7M
e○ Satisfactory Join
Path Per Query

mean 2.23 9.60 37.22 20.84 1.84 29.44 3.27
std 1.74 11.45 31.16 18.37 0.88 28.02 0.01

f○ Before Prune Edge Count 4.1K 57K 640K 473K 23K 1.7M 0.8M
g○ After Prune Edge Count 77 2.8K 5.4K 423 1.2K 3K 34K

Table 4: Offline time, hyperparameters, average join path

count per query and edge counts.

Effectiveness of SimHash Approximation for Semantic Joins.

We evaluate SimHash for detecting semantically joinable tuples
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between column pairs. From each data lake, we sample 200 random
column pairs and enumerate all semantically joinable tuple pairs
using Semantic Match (Equation 1) and denote them as ground
truth joinable tuple pairs. We then measure how well SimHash
recovers these pairs. Using Equation 7, we compute F1 scores while
varying the cosine similarity threshold 𝜃 in Equation 1, as shown
in Figure 7(top row).
●TruePositive (TP): Joinable tuple pairs identified by both SimHash
and the ground truth.
●False Positive (FP): SimHash-only detected pairs.
●False Negative (FN): Ground truth-only detected pairs.
Each curve corresponds to a SimHash bit count𝑏; we omit curves

that are redundant or dominated. For 𝜃 = 0.9—a value used in prior
semantic-join work [22]—the best average F1 across data lakes is
0.96 for the 𝑏 values in Table 4 c○, showing that SimHash accurately
recovers semantically joinable rows.

Table 4 b○ reports the cosine threshold 𝜃 used to construct the
ground-truth join graph. Table 4 c○ lists key SemDisc parameters:
the approximate semantic-join threshold 𝜃 𝑗 , the number of can-
didate columns per query column 𝜆, and the SimHash bit count
𝑏. We use 128 MinHash functions (the datasketch default) [4]. For
ground-truth join paths, we cap the path length L at 5. We also
describe how to tune 𝜃 𝑗 , 𝑏, and 𝜆 for new data lakes to improve
join-path quality.

Uniqueness of Join Paths for Query Tables. In our experi-
ments, the baseline methods aim to retrieve join paths for a given
query table. Multiple join paths may satisfy this objective by con-
taining the query table’s columns and tuples after materialization.
Table 4 d○ reports the total number of join paths identified for each
data lake, while Table 4 e○ presents the average number and stan-
dard deviation (std) of join paths retrieved per query table. Data
lakes and benchmarks derived from open data repositories (e.g.,
FWS, CDC, and LB) often contain tables with duplicate schemas
or overlapping content, leading to higher average counts of join
paths containing the query table’s tuples and columns. SemDisc
efficiently retrieves the required join paths, even in data lakes with
join path counts in the millions.

Takeaways: (1) Because it is able to index high-quality join paths,
the average precision of SemDisc is over 3× compared to state-
of-the-art QbE and join discovery methods. (2) Table-aware em-
bedding models fall short in tabular QbE tasks, where we have
to go from a limited set of rows, and produce join paths that
include hidden tables. (3) SimHash approximates semantic joins
accurately, reaching an average F1-score of 0.96 in approximating
semantic joins in all data lakes.

7.2 Efficiency of SemDisc

Offline and Online Phase Runtime. Table 4 a○ reports the to-
tal build time of SemDisc across all data lakes. The offline cost,
dominated by Join Path Index construction, can be reduced by
(1) increasing pruning thresholds to remove weak edges and (2) lim-
iting the maximum path length, both of which shrink the join graph
and speed up indexing.

Figure 6 reports the runtime of all queries and baselines. Even
though Ver does not detect semantic joins, it shows the worst query

runtimes because it exhaustively searches for join paths between
pairs of candidate tables using DFS during query time. On aver-
age, DataXFormer and WarpGate are the fastest. DataXFormer
omits many-to-many joins while searching for join paths and only
searches for join paths between the source columns and the tar-
get column, thereby significantly reducing runtime. WarpGate’s
SimHash encoding is generally faster than embedding extraction
(DeepJoin variants), querying the Inverted Join Path Index and
path ranking (SemDisc variants), or exhaustive path traversal (Ver
variants).

Between the Ver variants, the base Ver suffers from high run-
time due to a large amount of false positive candidate tables. Ver
searches for columns that contain at least one query value as a
substring, thereby expanding the search space. Ver+DeepJoin and
Ver+WarpGate fetch the columns that contain all the example val-
ues semantically using embeddings and SimHash, achieving better
accuracy and minimizing false positive matches.

Gen-T exhibits the highest runtime because, after query submis-
sion, it greedily performs a breadth-first search (BFS) to augment
the ID column to all candidate tables lacking it and then material-
izes all these augmented tables to join them using the ID column,
resulting in substantial runtime overhead.

Although the embedding models require comparable time for
embedding extraction, the runtime differences among SemDisc and
its variants primarily stem from variations in the constructed join
graphs and the corresponding join path indexes. A larger join path
index introduces a larger query runtime for these baseline variants.

Because SemDisc is an end-to-end system with multiple steps
to answer queries (Section 6), its query runtime can sometimes be
slightly worse than other baselines. However, as seen in the results
presented in Section 7.1, this slightly added overhead results in join
paths that are far better in quality to answer QbE queries.

Scalability of SemDisc. The offline indexing cost of SemDisc for
any target data lake is primarily determined by the Join Path Index
construction. As shown in Table 4 a○, the offline phase runtime
generally increases with the total number of join paths across data
lakes (Table 4 d○).

Effectiveness of Join Graph Pruning. Table 4 f○ g○ reports the
change in edge count in the join graph before and after pruning. As
we can observe, pruning significantly reduces the number of edges
in the join graph by orders of magnitude, which not only improves
query runtime but also facilitates the return of high-quality join
paths, as demonstrated in the previous experiments.

Takeaways: (1) SemDisc trades slightly longer query time for
higher-quality results. (2) Our join graph pruning strategy signif-
icantly reduces the edge count of the join graph while retaining
high-quality paths.

7.3 Hyperparameter Selection Experiments

JoinGraphApproximation. To select hyperparameters for SemDisc
on a new data lake, we first construct a ground-truth join graph
using 𝜃 = 0.9. We then build SemDisc ’s join graph for 𝜃 𝑗 ∈ [0.1, 0.9]
and SimHash bit counts 𝑏 ∈ [8, 30], and compare against the ground
truth.

We measure quality using the F1 score (Equation 7), where:
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Figure 7: (top) SimHash effectiveness on detecting joinable tuples for varying 𝜃 , (middle) join graph approximation using

SimHash and MinHash for varying 𝜃 𝑗 , (bottom) P@K vs candidate column count (𝜆).

Figure 8: P@K for queries with and without approximation

using SimHash and MinHash

●True Positive (TP): edges appear in both SemDisc ’s graph and
the ground-truth graph.
●False Positive (FP): edges appear in SemDisc ’s graph but not
in the ground truth.
●False Negative (FN): edges appear in the ground-truth graph
but are missing from SemDisc ’s graph.

Figure 7(middle row) shows the F1 scores across hyperparameter
settings onmultiple data lakes. The x-axis varies the approximate se-
mantic joinability threshold 𝜃 𝑗 ; each line corresponds to a different
SimHash bit count 𝑏. We omit curves that are strictly dominated.

SimHash Bit Count and Joinability Threshold. For each data
lake, we first identify the curve that attains the highest F1 score
and take its SimHash bit count 𝑏 as the best setting. These values
are reported in Table 4 c○.

Given 𝑏, we then choose the 𝜃 𝑗 value on that curve that achieves
the highest F1. From Figure 7(middle row), a threshold in the range
𝜃 𝑗 ∈ [0.5, 0.6] is sufficient to recover the join graph with high accu-
racy. In our experiments we use slightly higher 𝜃 𝑗 values (Table 4 c○)

to prune more aggressively and reduce runtime in both the offline
and online stages.

Candidate Column Count. At query time, SemDisc uses the
HNSW index to retrieve the top 𝜆 candidate columns for each
query column. Figure 7(bottom row) shows P@K as we vary 𝜆. The
curves have an elbow at some 𝜆, after which gains are marginal.
The values of 𝜆 used in our online phase are listed in Table 4 c○. As a
rule of thumb, for data lakes with about 100 tables, we recommend
𝜆 ∈ [10, 20]. For larger data lakes with more than 200 tables, 𝜆 = 30
is adequate to surface joinable tables.

Effect of SimHash and MinHash on P@K. Using SimHash and
MinHash (Section 4.2) introduces a small precision loss but yields
a large efficiency gain compared to computing joinability directly
from embeddings. In this experiment we disable sketching and
compute pairwise column joinability using the raw embeddings
(Equation 3) when building the join-path index and answering
queries. Figure 8 reports the change in P@K. On average, sketching
reduces precision by only 0.07, showing that SimHash andMinHash
preserve joinability signals while enabling much faster indexing
and query processing.

8 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced SemDisc, an end-to-end system for QbE
join discovery from data lakes. SemDisc currently only supports
joins. However, integrating other data discovery operators, such
as unions, would also be useful, presenting a new set of technical
challenges to answer qualitative QbE joinability and unionability
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queries. As part of future work, we plan to extend SemDisc to
support different join paths across tuple subsets of the same column.
Additionally, supporting self-joins presents further challenges, such
as managing repeated tables in join paths and ensuring consistent
tuple validation. Extending SemDisc to address these aspects will
improve its ability to discover more relational structures within
large data lakes.
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APPENDIX

A NP-HARDNESS PROOFS

A.1 Proofs for Problem 1

Let 𝐺 = (𝑉 , 𝐸) be the join graph, where each vertex represents a
table in the data lake and each edge 𝑒 ∈ 𝐸 represents a possible join
between two tables, with an associated joinability score𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) ∈
[0, 1]. For a query table 𝑄 , let 𝑇𝑠𝑒𝑡 (𝑄) ⊆ 𝑉 be the set of tables that
contain columns semantically joinable with the columns of 𝑄 . For
any join tree 𝑃 in 𝐺 , we write 𝑉 (𝑃 ) and 𝐸(𝑃 ) for its set of vertices
and edges, respectively. The goal is to find a join tree 𝑃∗(𝑄) that
maximizes the total weight of selected edges while satisfying the
following constraints: (1) 𝑃∗ maximizes the sum of edge weights; (2)
𝑃∗ includes all tables in 𝑇𝑠𝑒𝑡 (𝑄); (3) 𝑃∗ may include other (hidden)
tables that are needed to join the tables in 𝑇𝑠𝑒𝑡 (𝑄); and (4) |𝑉 (𝑃∗)|≤
L, a maximum table count budget (we want to bound how many
tables we can have in a join tree).

A.1.1 Unbudgeted Weight-Optimal Join Tree for Query Table Prob-
lem. We first focus on Conditions (1)–(3) to establish NP-hardness
via a reduction from the Minimum-Weight Steiner Tree problem.
Subsequently, we show—by proof of restriction—that introducing
the table budget constraint in Condition (4) preserves NP-hardness
(Appendix A.1.2).

We show that this problem is NP-hard by a reduction from the
Minimum-weight Steiner Tree problem, which is known to be NP-
hard [42].

Reduction. Given an instance of the Steiner Tree problem defined
by 𝐺 ′ = (𝑉 ′, 𝐸′), a positive edge weight function 𝑤 : 𝐸′ → R>0, a
set of terminal vertices 𝑅 ⊆ 𝑉 ′ (vertices that have to included in the
Steiner tree), we construct an equivalent instance of our problem
as follows:
(1) Let the join graph 𝐺 = (𝑉 , 𝐸) be identical to 𝐺 ′, i.e., 𝑉 = 𝑉 ′ and

𝐸 = 𝐸′.
(2) For each edge 𝑒 ∈ 𝐸, set its join weight as 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) = −𝑤 (𝑒).

This preserves the relative ordering of solutions while convert-
ing the minimization objective of the Steiner Tree problem into
a maximization objective.

(3) Set 𝑇𝑠𝑒𝑡 (𝑄) = 𝑅, i.e., the required tables in the query correspond
to the Steiner terminals.

Correctness. We now show that there exists an optimal join tree
𝑃∗ of total weight𝑊 ∗ for the constructed instance if and only if
there exists a minimum-weight Steiner tree of total weight 𝐶∗ for
the original instance.
(⇒) Suppose there exists a Minimum-weight Steiner tree 𝐻 =
(𝑉𝐻 , 𝐸𝐻 ) such that 𝑅 ⊆ 𝑉𝐻 and ∑

𝑒∈𝐸𝐻 𝑤 (𝑒) = 𝐶
∗. Since 𝐻 is con-

nected, we can define a corresponding join tree 𝑃 consisting of the
same edges. The total weight of 𝑃 is:∑︁

𝑒∈𝐸(𝑃 )
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) =

∑︁
𝑒∈𝐸𝐻

(−𝑤 (𝑒)) = −𝐶∗ .

Because 𝐻 connects all vertices in 𝑅 = 𝑇𝑠𝑒𝑡 (𝑄) and includes only
edges in𝐺 , 𝑃 satisfies all join tree constraints. Thus, 𝑃 is optimal
with weight value −𝐶∗.

(⇐) Conversely, suppose there exists a feasible join tree 𝑃 in the
constructed instance with total weight𝑊 ∗ = ∑

𝑒∈𝐸(𝑃 )𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒). Let
𝐻 be the undirected subgraph of 𝐺 ′ induced by the edges in 𝐸(𝑃 ).
By construction, 𝐻 is connected, spans all vertices in 𝑇𝑠𝑒𝑡 (𝑄) = 𝑅,
and has weight∑︁

𝑒∈𝐸𝐻
𝑤 (𝑒) = −

∑︁
𝑒∈𝐸(𝑃 )

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) = −𝑊 ∗ .

Hence, if 𝑃 is optimal for our problem, then𝐻 is a minimum-weight
Steiner tree for the original instance.

A.1.2 Budgeted Weight-Optimal Join Tree for Query Table. Now
we add a table budget: find 𝑃∗ as above (in the unbudgeted weight-
optimal join tree problem) with the additional constraint |𝑉 (𝑃∗)|≤
L (we can only use up to L tables in the join tree).

Proposition 3. The Budgeted Weight-Optimal Join Tree problem
is NP-hard (by restriction).

Proof (by restriction). Every instance of the unbudgeted prob-
lem is a special case of the budgeted problem obtained by setting
L := |𝑉 |, which makes the budget non-restrictive. Therefore, if the
budgeted problem were solvable in polynomial time, so would be
the unbudgeted problem. Since the unbudgeted problem is NP-hard,
the budgeted problem is also NP-Hard. □

A.2 Proof for Problem 2

We prove by restriction that Problem 1 is a special case of Problem
2, and therefore, Problem 2 is at least as hard as Problem 1.

Proof (by restriction). We can reduce any instance 𝐼 of Prob-
lem 1 to the Problem 2 instance 𝐼 ′ with the same data and param-
eters, and either (a) an empty example set in 𝑄 (so 𝑆𝑇𝑀(𝑄,𝑇 (𝑃∗))
holds vacuously), or (b) similarity threshold 𝜃 = 0 so 𝑀𝑠

𝜃
(·, ·) = 1

and 𝑆𝑇𝑀(𝑄,𝑇 (𝑃∗)) always holds. Under either choice, the feasible
solutions of 𝐼 ′ are exactly those of 𝐼 , and the primary objective
(weight optimality) is identical. The secondary tie-break (maximize
|𝑇 (𝑃∗)| among weight-optimal trees) does not change NP-hardness.
Hence, Problem 1 is a special case of Problem 2, implying Problem 2
is NP-Hard. □

B EXAMPLE PROMPT FOR SEMANTIC TYPE

EXTRACTION

A complete example prompt for the LLM for a table from the
LakeBench (Open Data dataset) benchmark is given below, where
SemDisc extracts semantic types of three sample columns
iPlayerStartupDelay24hr and NetflixHD24hr with 10 example
values:
Below is a list of column ids and a sample of their

values seperated by commas from a table. Give detailed

elaborate semantic type for each column in the

following format:

[{"id": columnid1, "semantictype":typename1},

{"id": columnid2, "semantictype":typename2}, ...]
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input:

id: iPlayerStartupDelay24hr

sample values: 904.85, 740.89, 485.23, 551.3, 421.49,

557.25, 522.2, 601.27,

id: NetflixHD24hr

sample values: 0.00%, 100.00%, 0.28%, 0.29%, 0.30%,

0.85%, 0.57%, 2.27%, 0.73%, 0.31%,

The output of the LLM is as follows:
1 [
2 {
3 "id": "iPlayerStartupDelay24hr",
4 "semantictype": "24-Hour iPlayer Startup Delay

(Milliseconds)"↩→

5 },
6 {
7 "id": "NetflixHD24hr",
8 "semantictype": "24-Hour Netflix HD Streaming Success

Rate Percentage"↩→

9 }
10 ]

C EXAMPLES OF REAL WORLD QUERY

TABLES AND JOIN PATHS WITH HIDDEN

TABLES

We provide examples of query tables that require join paths with
hidden tables from the data lakes in Figure 9. Each example query
table requires hidden tables in order to connect the candidate tables
and create a join path. For brevity, we show a sample of 2-3 query
rows for each query table.

D TIME COMPLEXITY ANALYSIS OF

ALGORITHM 2

Building the HNSW index requires O(|𝐶 |log|𝐶 |), where 𝐶 is the
set of all data lake columns. Search using the HNSW index after
embedding extraction requires O(𝑙 · log|𝐶 |), where 𝑙 is the query col-
umn count. The time complexity of filtering out candidate columns
based on SimHash values is O(𝑙 · 𝜆 · 𝑟 )- where 𝜆 is the count of data
lake columns selected by semantic type comparison and 𝑟 is the
count of rows in the query table 𝑄 .

E EFFECTIVENESS OF SEMANTIC TYPES AND

EDGE PRUNING

In the following experiment, we evaluate the benefit of semantic
type detection in SemDisc and how it affects precision.

Contribution of Semantic Types to Join Path Quality. We
manually annotate 50 column pairs per data lake to determine
joinability based on semantic type similarity and value overlap.
For instance, in the MD data lake, columns such as (is course
taken) and (is a senior) exhibit high value overlap but differ
semantically, and are thus non-joinable. In contrast, (is course
taken) and (is enrolled in course) share similar semantics
and are joinable.

We compare two filtering techniques before computing value over-
lap:

(1) Embedding similarity between default column headers, and
(2) Embedding similarity between LLM-extracted semantic types.

A column pair is considered for value overlap if its cosine similarity
exceeds the threshold 𝜃 .
We evaluate both techniques using the following metrics:

Accuracy (ACC) =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision (PR) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall (R) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-score (F1) = 2 × 𝑃𝑅 × 𝑅
𝑃𝑅 + 𝑅

Here,
• 𝑇𝑃 denotes true positives (joinable pairs correctly predicted
as joinable),
• 𝑇𝑁 denotes true negatives (non-joinable pairs correctly pre-
dicted as non-joinable),
• 𝐹𝑃 denotes false positives (non-joinable pairs incorrectly
predicted as joinable), and
• 𝐹𝑁 denotes false negatives (joinable pairs incorrectly pre-
dicted as non-joinable).

Figure 10 shows that detecting joinable column pairs using se-
mantic types outperforms using the column headers as semantic
types in the data lakes. Detecting joinable columns based on col-
umn header similarity gives numerous false positives. For example,
in the DrugCentral data lake, two ‘ID’ columns from the ‘drugs’
and ‘pharmacies’ tables have the same column headers and contain
values with high overlap. However, the two columns indicate ‘Drug
ID’ and ‘Pharmacy ID’, which are unsuitable for joining. Comparing
column header similarity would mark this column pair as joinable,
whereas using semantic types alongside semantic joinability would
detect the subtle semantic type difference between the columns.
The semantic types are extracted with prompts to the LLM contain-
ing the context of the entire table; therefore, they are rich in context
compared to the default column headers, which is why semantic
types are better at detecting joinable column pairs.

Takeaways: Semantic types provide the best accuracy in find-
ing suitable join paths across multiple tables than using default
column headers.

DC MD FWS CDC SP LB
a○ Candidate Table to
Path (fraction of queries
w/ correct path)

SD 0.93 1.00 1.00 0.96 0.90 0.83

V 0.00 0.07 0.00 0.00 0.72 0.33
DJ 0.10 0.06 0.33 0.06 0.72 0.78
WG 0.14 0.03 0.35 0.21 0.86 0.49

Table 5: Fraction of queries with correct join paths detected

by baselines only from candidate tables (SD=SemDisc, V=Ver,

DJ=DeepJoin, WG=WarpGate)
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Figure 9: Examples of query tables and their corresponding join paths with hidden tables

Figure 10: Metrics of joinable column detection by headers

vs. semantic types

F CANDIDATE TABLE TO JOIN PATH

DETECTION

In the end-to-end evaluation (Section 7.1), the baselines translate
the query columns into candidate tables, then find the join paths
between them, and report on whether the semantic tuple match
condition holds in the top 𝐾 returned join paths. In this experiment,
we evaluate SemDisc and the baselines on their ability to find
join paths only from the ground-truth candidate tables, thereby
removing the query column to candidate column mapping and
the semantic tuple match evaluation. Instead of giving the query
tables as input, we directly give the baselines the candidate columns
and report the effectiveness of finding the join path containing the
candidate tables. Table 5 reports the fraction of queries for which

the baselines found a path that contains all the candidate tables (1
means all candidate tables were found).

DeepJoin and WarpGate generally have a low fraction of found
join paths because they find joins between the candidate tables
directly without considering any hidden tables that might be needed
but were not mentioned in the query table. However, for SP, all
competing baselines are able to find over 70% of the target join
paths. This is because SP has a small number of tables per database,
and the number of rows per table is small. Ver arbitrarily orders
the candidate tables first, and then finds join paths between pairs
of candidate tables. This arbitrary ordering of the candidate tables
does not guarantee finding the best join path for a given query
table. SemDisc indexes all possible join paths in the Inverted Join
Path Index, making it possible to find the best join path without
making any assumption on the ordering between candidate tables.
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