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ABSTRACT

Location-based Social Networks (LBSNs) enable users to socialize with friends and acquaintances by shar-
ing their check-ins, opinions, photos, and reviews. A huge volume of data generated from LBSNs opens up
a new avenue of research that gives birth to a new sub-field of recommendation systems, known as Point-
of-Interest (POI) recommendation. A POl recommendation technique essentially exploits users’ historical
check-ins and other multi-modal information such as POI attributes and friendship network, to recom-
mend the next set of POIs suitable for a user. A plethora of earlier works focus on traditional machine
learning techniques that use hand-crafted features from the dataset. With the recent surge of deep learn-
ing research, we have witnessed a large variety of POl recommendation works utilizing different deep
learning paradigms. These techniques largely vary in problem formulations, proposed techniques, used
datasets and features, etc. To the best of our knowledge, this work is the first comprehensive survey of
all major deep learning-based POI recommendation works. Our work categorizes and critically analyzes
the recent POl recommendation works based on different deep learning paradigms and other relevant
features. This review can be considered a cookbook for researchers or practitioners working in the area

of POI recommendation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Location-based Social Networks (LBSNs) offer users a unique
opportunity to socialize by sharing their check-ins, opinions, pho-
tos, and reviews. All these advantages paired with the wide avail-
ability of smartphones have dramatically increased the user base
to billions-scale in these LBSNs platforms. Consequently, we have
witnessed an explosion of rich multimodal spatio-temporal data
collected from these platforms. The availability of this huge
amount of data opens up new opportunities in Point-of-Interest
(POI) recommendation, a vibrant independent sub-area in a recom-
mendation system that has garnered significant attention from
both user and business perspectives in recent years. A POI recom-
mendation technique essentially exploits users’ historical check-
ins and other multimodal information to recommend the next
set of POIs suitable for a user. As the size and modality of the data
and the user expectation widely vary, this opportunity of having
tons of multimodal data comes up with new challenges enticing
the researchers to design novel techniques to better capture mobil-
ity patterns and other features (e.g., spatial, social, textual) to
improve the POl recommendation performance.

Different types of POl recommendations have already been
incorporated in different commercial systems that include Yelp,
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Facebook, Twitter, and Google Map. For example, Yelp suggests
the places that a user might be interested in based on his/her pre-
vious check-ins. Similarly, Google maps use the location history of
a user to facilitate improved search results through location
suggestions.

Earlier research works in POl recommendation primarily
focused on feature engineering and conventional (non-deep learn-
ing) machine learning-based methods. Markov Chain based
stochastic models have been explored extensively in this regard
[1-9]. Due to the success of Matrix Factorization (MF [10]) based
methods for recommendation systems in other domains, MF meth-
ods [2,11-20] have also been studied for better POl recommenda-
tion modeling. To achieve better performance than vanilla MF
methods, Bayesian Personalized Ranking (BPR [21]) methods have
been employed [22-28,8]. Other traditional approaches like Sup-
port Vector Machine (SVM) [29], Collaborative Filtering [30-35],
Gaussian Modeling [36], Transitive Dissimilarity [37] have also
been exploited in different works for personalized POI recommen-
dation. One major shortcoming of all these approaches lies in fea-
ture engineering, and explicit feature engineering requires
sufficient domain expertise. The increasing availability of data
from different modalities like images, texts, and POI reviews makes
these feature engineering tasks even more challenging as manually
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crafting the relationship between these unstructured features is
not a trivial task. Consequently, deep learning-based methods
replaced most of those traditional techniques in recent years.

Deep learning methods like Convolutional Neural Networks
(CNN) or Recurrent Neural Networks (RNN) provide a number of
advantages in terms of automatic feature extraction eliminating
the difficulties in handcrafted features extraction. Furthermore,
deep learning-based methods excel in modeling complex relation-
ships between structured and unstructured data, which lets us
leverage multimodal data from different domains in POI recom-
mendation. In the last few years, we have seen an unprecedented
rise in the number of works leveraging deep learning in POI recom-
mendation in all major venues (e.g., AAAI, IJCAI, SIGIR, CIKM,
WWW, etc.). The use of different deep learning paradigms such
as CNN [38,39], RNN [40-43], Long Short Term Memory (LSTM)
[44-47], Gated Recurrent Unit (GRU) [48-50], and self-attention
[51,52] have greatly boosted the performance of POI recommenda-
tion models. On top of that, state-of-the-art techniques from Nat-
ural Language Processing (NLP) have also been employed for
complex modeling of human mobility in POl recommendation.
Some recent works have leveraged graph embedding to enrich
models with semantic geospatial information [53-55]|. The wide
varieties of deep learning-based POI recommendation techniques
introduced in a short timespan necessitate a comprehensive
review of these works (i) to demonstrate how different techniques
have been used to handle different features, (ii) to identify the pros
and cons of each model, and (iii) to propose a summary guideline
for potential gaps and future research opportunities.

1.1. Previous surveys on POl recommendation

Several survey papers exist in the literature on POl recommen-
dation. In an early work, Bao et al. [56] reviewed traditional (i.e.,
non-deep learning) POl recommendation methods. In a later work,
Liu et al. [57] conducted an experimental evaluation of some of the
then state-of-the-art traditional POI recommendation models. In
another work, Zhao et al. [58] classified POl recommendation mod-
els in three taxonomies: influential factor-based, methodology-
based, and task-based. All those surveys primarily focused on fea-
ture engineering-centric (i.e., non-deep learning) models. Later,
Zheng et al. [59] did a comprehensive review of location prediction
on the Twitter dataset, where they also acknowledged the uprise of
deep learning-centric approaches. In another review of POI recom-
mendation models, Liu et al. [60] also mentioned few neural net-
work models. Since then, a large body of works in POI
recommendation has been introduced leveraging different deep
learning paradigms. In the last few years, researchers utilized
RNN, LSTM, graph neural networks, attention networks in different
ways to make use of different features resulting in significant per-
formance uplift. Recently, Wang et al. [61] summarized a handful
of deep learning-based models in the spatio-temporal domain.
However, since this paper was a summary of the whole spatio-
temporal domain, few POI recommendation models were dis-
cussed at a high-level. Another recent review of location prediction
models [62] mostly discusses non-deep learning models with a
very coarse focus on some deep learning models.

Large varieties of recent deep learning-based POI recommenda-
tion works largely vary w.r.t. problem formulations, proposed
techniques, used datasets, used features, etc. There is no unified
study to categorically discuss the pros and cons of different deep
learning paradigms on POI recommendations. The wide variety of
these techniques can easily puzzle someone willing to explore this
field of POI recommendation. This survey work fills up the above
gaps of the existing studies.
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1.2. Contributions of our survey

In summary, to fill the gaps of existing surveys on POI recom-
mendation techniques and to analyze the growing number of
recent papers in this domain, we have made the following major
contributions in this review paper.

e We enlist the major challenges that researchers have faced
while building POI recommendation models (Section 3).

e We outline the features of all datasets used in this domain and
discuss their strengths as well as their limitations (Section 5).

e We categorize the POl recommendation models based on differ-
ent deep learning paradigms and compare their competitive
(dis)advantages (Section 6).

o We identify different factors (i.e., social influence, sequential
effect, etc.) that impact the POI recommendations and provide
tabular analysis of each factor (Section 8).

e We present the comparison of all state-of-of-art techniques
based on their performance metrics (Table 3).

¢ Finally, we provide comprehensive future recommendations for
POI research (Section 9).

2. Problem definition

Point-of-Interest (POI) recommendation is a class of problems
that suggest suitable future POIs for a user, given the historical
check-in history of users and other associated data of an LBSN.
Let U= {uj,uy,...uy} be a set of N LBSN wusers and
P ={p,,p,,-..-Pu} be a set of M POIs in the LBSN. Users may be
linked to each other through a set of connections U
= {(u;, uj)|u;, u; € U}. Each POI p is geo-coded by latitude x,, longi-
tude y,, and a set of attributes W), representing POI semantics. We
first define the relevant terms and then formally define the prob-
lem as follows:

2.1. Definition 1 (Check-in)

A check-in pf indicates the POI checked-in by user u at time ¢;.

2.2. Definition 2 (Check-in List)

Each user u is associated with a list of check-ins
C' = {pt,p,...,pL}, where p denotes a check-in record of user
uattimet;and 1 <=i<=T.

2.3. Definition 3 (Next POI recommendation)

Given a check-in list C* of a user u, the next POl recommenda-
tion refers to the prediction of the next POI at time tr,;.

2.4. Definition 4 (Sequence of POl Recommendation)

Given a check-in list C* of a user u, sequence of POl recommen-
dation will recommend the next n POIs which is from t;.; to tr.,.

2.5. Definition 5 (Missing POI Check-in Identification):

Given the check-in list, C"={p}{, pf...., 0L Pt . PL .,

.., pt, } of an user u where, the check-in p{ at time ¢y, is missing,

then missing POI check-in identification system will predict the
POI for time t,.
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3. Challenges

In recent years, extensive research has been carried out in the
field of POI recommendation. Researchers had to face a number
of challenges in devising effective POl recommendation techniques
based on users’ past check-ins and other metadata. Major chal-
lenges in the area of POl recommendation are listed as follows.

3.1. Data sparsity

Data sparsity is one of the most crucial problems of building an
effective POl recommendation system. From a user’s point of view,
a person travels to a very few locations in his/her lifetime com-
pared to the sheer huge number of POIs available to be visited. Fur-
thermore, exploring different POIs cost significantly higher than
the exploration of different options in other fields of recommenda-
tion, which further exacerbates the data sparsity issue. Conse-
quently, the relationships between users and POIs described in
the datasets are genuinely sparse. Thus, it is always a challenge
to design an effective POl recommendation system with sparse
datasets.

3.2. Cold start

When a user joins an LBSN network, the lack of proper charac-
terization of that user results in poor initial recommendation per-
formance. Similarly, when a new POI is created to be explored, it
heavily lags behind the already existing POls in terms of recom-
mendation due to the lack of historical trajectories associated with
that POL This problem is common to most of the present recom-
mendation models, which is also known as a cold start problem.
Eliminating the cold start problem requires in-depth insight into
the field of POl recommendation research.

3.3. Capturing contextual information

Accurate POI recommendation relies on processing POI features
as well as user reviews and other text data available from LBSN
platforms. These textual data contain information about a person’s
experience of visiting a place. User data of POl recommendation
contains reviews and text data that convey information about a
person’s experience of visiting a place. The processing of this
semantic information requires additional different architectures
to be added parallel to the main neural network of POI recommen-
dation. The processing of user-POI embeddings with semantic
word embedding layers is thus a quite challenging task for POI
recommendation.

3.4. Change of user preferences

A user may show a significant amount of variation in his/her
lifestyle. These changes may occur due to major life events such
as aging, marriage, migrations, job changes etc. of an individual.
These complex events are hard to detect and analyze from a data-
set that contains a low amount of information per individual. As a
result, an individual user may not get personalized recommenda-
tions from social media websites that use non-deep learning mod-
els because non-deep learning models do not capture the in-depth
insight of user data quite well.

4. Network architecture preliminaries

In this section, we present the preliminary overview of different
deep neural network paradigms that include Feed-Forward Net-
work, Convolutional Neural Network, Recurrent Neural Network,
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Long-Short Term Memory, Gated Recurrent Unit, Attention Mech-
anisms, and Generative Adversarial Network.

4.1. Feed-Forward Network

Feed-Forward Networks (Fig. 1) are the most basic form of neu-
ral networks. Neural nodes are stacked up in layers where every
node from a layer is connected to all the nodes in the next layer.
The weighted connections combine the features of one layer and
pass them to the subsequent layer through a nonlinear function
(e.g. ReLU, Sigmoid, tanh, etc.). Stacking up layers of neurons dra-
matically increases the expressiveness of the network.

Although feed-forward networks can capture highly complex
relationships within features, their overly high representational
power usually causes overfitting training data resulting in poor
generalization. Furthermore, as the number of layers increases,
the sizes of the models dramatically increase making them harder
to train and deploy. Most importantly, feed-forward networks have
no explicit spatial and sequential feature handling capability,
which limits their usage in spatio-temporal models.

4.2. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are particularly suited
for capturing spatial features from a given input. In CNN, convolu-
tional filters, and pooling layers are systematically used to hierar-
chically process inputs. Subsets of the inputs are gradually
channeled through convolutional filters, and pooling layers are
used to scale down the transformed features. This process helps
the CNN to gain spatial awareness while keeping the number of
parameters significantly lower than feed-forward networks. To
extract the spatial patterns in spatiotemporal data, CNNs are thus
proven to be highly useful.

4.3. Recurrent Neural Network

Feed-forward networks or Convolutional Neural Networks do
not consider any sequential or temporal dependency within the
inputs. Recurrent Neural Network (RNN) solves this problem by
taking a sequence of inputs and then learning the sequential pat-
tern of the input sequence by using hidden states. We show the
basic diagram of RNN in Fig. 2. In this figure x;,y; and h; represent
the input, output, and hidden state, respectively. We can see that
besides input each RNN block uses a hidden state to produce out-
put. Actually, the hidden states capture the context information of
the input sequence which means capture the sequential pattern.

4.4. Long-Short Term Memory

RNN suffers from exploding Gradients and vanishing Gradients
problems, as a result, can not capture long-term preferences. To
solve the problems Long-Short Term Memory (LSTM) [63] is pro-
posed. LSTM uses a gate mechanism and can capable of capturing
long-term preferences. We can see an LSTM cell in Fig. 3. In addi-
tion to hidden state h; which is used in RNN, every LSTM block
has a cell state c;. Also, the flow of the information among consec-
utive LSTM cells is controlled via three gates: (1) input gate, (2) for-
get gate, and (3) output gate.

4.5. Gated Recurrent Unit

LSTM resolves the problems of RNN but it has three gates so the
training of an LSTM based model is slower and requires a large
amount of training data. For solving these issues Gated Recurrent
Unit (GRU) [64] is proposed. It uses only two gates, i.e., reset and
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Input layer ‘ Output layer

Hidden layers

Fig. 1. Feed-forward network.

forget gates. Thus, the GRU-based model can be trained faster and
performs better than LSTM when there is less training data.

4.6. Attention mechanism

Sequence models like RNNs or LSTMs process inputs by logical
order of sequence. However, this scheme tends to lose features in
longer sequences resulting in poor model performance. Attention
mechanism [65] largely solves this shortcoming by mimicking a
humanlike focus in salient input regions. Humans are prone to giv-
ing higher attention to key parts of the input, which in turn helps
to break down a complex input into simpler parts that can easily be
processed. While Seq2Seq models [66] have taken the advantage of
this attention mechanism to improve performance, recent
advancements in attention mechanisms have introduced self-
attention mechanisms [67] that improves performance as well as
allows parallel processing of inputs making them lucrative for var-
ious applications. The key idea here is that inputs are mapped to
query, key, and value vectors. The outputs are calculated by taking
the weighted sum of the value vectors where weights are deter-
mined by a function of query and key values. This technique has
been highly effective in many areas of NLP research, which shows
its potential in other domains involving sequential data.

4.7. Generative adversarial network

Generative adversarial networks (GANs) [68] are a special form
of generative machine learning framework where two different

Yi

Xn

Fig. 2. RNN model.
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Fig. 3. Basic LSTM Ccell.

networks compete against each other with different goals. One of
them is called “Generator” and the other is called “Discriminator”.
The generator network generates candidates whereas the discrim-
inator network tries to assess those candidates. The generator tries
to “fool” the discriminator by creating novel sample candidates
whereas the discriminator tries to distinguish those samples from
the true data distribution. A generic GAN is shown in Fig. 4. In
recent years, GANs have shown impressive performance in image
synthesis, video game resolution upscaling, art generation, and so
on.

5. Dataset description

Prior works in Point-of-Interest recommendation have used
check-in data collected from a wide range of LBSNs that include
Foursquare, Gowalla, Yelp, Twitter, Facebook, Brightkite, Insta-
gram, WeChat, and Baidu Map. Most of these datasets consist of
tabular data that records the user-POI and the user-user relation-
ship in LBSNs. User-POI data typically contains user check-in infor-
mation including timestamps, location, and semantic features.
Here POI Semantic features include the categories of the POlIs
and tags included in user LBSN posts, creation date of the POIs,
geolocations (latitude, longitude), check-in counts, number of
users checked-in, radius, etc. On the other hand, user semantic fea-
tures contain the number of posts, friends, check-ins, etc. In order
to keep the social influence in context, datasets like Foursquare,
Gowalla, Weeplace also contain user-user relationships as a
many-to-many schema, where each user is connected to all his
friends. Because of all these data and a huge number of check-
ins, some of these datasets become exceedingly large. Conse-
quently, most of the prior works focused on a specific region or a
country to keep the size tractable. A brief discussion on these LBSN
datasets is given below:

5.1. Foursquare

Founded in 2009, Foursquare' has worked with world-wide col-
lection and distribution of location data to facilitate technological
corporations and brands. Most of the POl recommendation models
discussed in this review use the datasets of Foursquare from a time
range of 2010 to 2014. The datasets contain check-in data collected
mostly from the USA and Tokyo. This dataset also contains the list of
all friends of each user in the LBSN.

5.2. Gowalla

Gowalla is a location-based social media platform dedicated to
location check-ins. The platform was founded in 2007 and acquired

! https://foursquare.com/.
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Fig. 4. Generative adversarial network.

by Facebook in 2012. Gowalla was primarily a mobile application
that allowed users to check into locations that they visited using
their mobile devices. The datasets from the functioning period of
Gowalla were available via the Gowalla API and currently, there
are no official distributors for the datasets. Gowalla is the second
most used dataset in the POl recommendation models discussed
in this paper. Most prior works discussed have used check-in data
from February 2009 to October 2010. Like Foursquare, the Gowalla
dataset also contains the list of friends of every user in the dataset.
Besides, a detailed description of each POI and user profiles are also
available in this dataset.

5.3. Brightkite

Brightkite was a location-based social media network that
launched in 2007 and got dissolved in 2012. The platform provided
the ability to check-in through text messaging or a mobile applica-
tion after visiting a location. Datasets of Brightkite are no longer
officially available but still can be accessed from various research
archives around the globe.

54. Yelp

Yelp? is another popular LBSN platform. As users tend to check-in
different business locations, Yelp provides reviews and ratings from
customers who shared their own experiences both for personal and
research purposes. Yelp was founded in 2004 and is still operational
as a reviewing company for business establishments. POl recom-
mendation models are greatly benefited from the textual reviews
of Yelp because reviews provide semantic information of POlIs.

5.5. Weeplaces

WeePlaces is a service that visually maps users’ check-ins on
location-based services. Weeplaces has been integrated with
Gowalla and Facebook, giving users the ability to visualize where
users have announced their locations to friends across Foursquare,
Gowalla, and Facebook Places. Like the Foursquare and Gowalla
dataset, the Weeplace dataset also contains the list of friends con-
nected to a user which can be leveraged for capturing social influ-
ence in POl recommendation.

5.6. Instagram

Instagram® is a social media platform initially released in 2010
and currently owned by Facebook. Instagram allows users to post
and share photos and videos online. Users can browse other users’
content by tags and locations. Instagram dataset primarily contains
user check-in data which has been used in some recent works on
POI recommendation.

2 https://www.yelp.com/.
3 https://www.instagram.com.
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5.7. Twitter

Twitter® is a highly popular social media platform where a user
can post, see, and share short messages known as 'tweets. Twitter
was founded in 2006 and is currently the most popular micro-
blogging service around the world. The check-in functionality of
Twitter enables users to record visits to locations. The datasets are
available through Twitter public APL

5.8. Other datasets

Some other used datasets are collected from WeChat,” Baidu
Maps,® Facebook.” Functionalities of WeChat include texting, voice
messaging, video conferencing, and location sharing. Baidu Maps
provide street maps and views, satellite views of terrains, and route
planners for traveling. Facebook is currently the largest social media
site where users can post text, photos, and multimedia to share
information about themselves. Posts can include check-in informa-
tion about a visited place and thus datasets of Facebook are officially
available for POI prediction research.

For detailed information on some of the most used datasets
used in POI recommendation, see Table 1. And to see the statistics
of the datasets associated with each of the discussed papers, see
Table 4.

6. POI recommendation models

Thanks to the astounding growth of the user base in LBSNs, the
amount of check-in data collected from these platforms have
increased rapidly in recent years. This large volume of data has
fueled the adaptation of deep learning techniques in the field of
POI recommendation. While earlier works used conventional
machine learning models, recent deep learning-based models have
mostly replaced them due to the significantly higher performance
with abundant potential to further improve the performance. Thus,
in this survey, we mainly focus on Deep Neural Network (DNN)
based POI recommendations. We categorize all of the proposed
models used thus far into six major categories. They are RNN based
models (Section 6.1), LSTM models (Section 6.2), GRU models (Sec-
tion 6.3), Graph Embedding models (Section 6.4) GAN models (Sec-
tion 6.5), and other models (Section 6.6). These categories are
described in the following subsections. We briefly highlight these
models in Table 2, and the dataset used in each model are depicted
in Table 4. A concise summary of these models, evaluation metrics,
and their performance across different datasets are given in
Table 3.

6.1. RNN based models

Recurrent Neural Networks (RNN) are renowned for their high
effectiveness in NLP problems. As POl recommendation problems
show similar properties that resemble NLP tasks, many recent
POI recommendation models use RNN as their base architecture.
In this subsection, we discuss the basic RNN based POI recommen-
dation models that can map a POI-sequence to another POI-
sequence (successive POI recommendation), or only one POI (next
POI recommendation). Here we discuss the next POl recommenda-
tion only.

Liu et al. [40] proposed a model, called Spatial-Temporal
Recurrent Neural Networks (ST-RNN), for POl recommendations.
The ST-RNN model extends the RNN model for capturing spatial

4 https://twitter.com.

5 https://www.wechat.com/.
6 https://map.baidu.com/.

7 https://facebook.com.
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Dataset Attributes Description of the table
name
Foursquare wuserID, Time(GMT), Venueld, VenueName, VenueLocation, Describes the user-POI relationship. Contains all user-checkins with date-

VenueCategory time of checkin; name, location and type of POI

userID, friendID Describes the user-user relationship. Contains the list of all friends of each
user in the LBSN

Gowalla userId, timestamp, latitude, longitude Describes the user-POI relationship. Contains all check-in information of

each user such as location and time of the visit

userId, friendId Describes the user-user relationship. Contains the list of all friends of each
user in the LBSN

id, name, created_at, 1lng, lat, photos_count, checkins_count,  Description of each POI of the LBSN including the counts of user, checkins,

users_count, radius_meters, highlights_count, items_count, photos, items and highlights. The name, city, date-time, category and radius

max_items_count, spot_categories, city_state on the map of each POI are also included

id, bookmarked_spots_count, challenge_pin_count, Details of the profile of each user of the LBSN

country_pin_count, highlights_count, items_count,

photos_count, pins_count, province_pin_count,

region_pin_count, state_pin_count, trips_count,

friends_count, stamps_count, checkin_num, places_num

Brightkite user, check in time, latitude, longitude, location id Describes the user-POI relationship. Each row contains time and location

information of check-ins made by one user

useridl, userid?2 Describes the user-user relationship. The friendship network of Brightkite
users is described in this table.

Yelp business_id, name, address, city, state, postal_code, Contains POI business data including location data, attributes, and
latitude, longitude, stars, review_count, is_open, categories. Attributes include whether the restaurants accept takeouts and
attributes, categories, hours have business parkings
review_id, user_id, business_id, stars, date, text, useful, Contains full review text data including the user_id that wrote the review
funny, cool and the business_id the review is written for.
user_id, name, review_count, yelping_since, friends, useful, User data including the user’s friend mapping and all the metadata
funny, cool, fans, elite, average_stars, compliment_hot, associated with the user.
compliment_more, compliment_profile, compliment_cute,
compliment_list, compliment_note, compliment_plain,
compliment_cool, compliment_funny, compliment_writer,
compliment_photos
business_id, date Checkins on a POI of all the users
text, date, compliment_count, business_id, user_id Tips are written by a user on a POI business location. Tips are shorter than

reviews and tend to convey quick suggestions.
photo_id, business_id, caption, label Contains photo data including the caption and classification
Weeplace userid, placeid, datetime, lat, lon, city, category Describes the user-POI relationship. Each row contains check-in information
of a user, date and time of the visit. The row also contains the location,
category, subcategory, and name of the city of the POI.
useridl, userid?2 Describes the user-user relationship. Contains the list of all friends of each
user in the LBSN
Instagram  user_id, latitude, longitude, timestamp Details of the user-POI relationship. Each row contains check-in information
of a user, the date and time of the visit, and the location of the POI
Twitter userlD, tweetID, latitude, longitude, time, placelD, Contains information about a tweet having a check-in. Each row represents a

contentInfo

tweet, a user, location and identifier of the POI, and tags associated with the
POI

and temporal effects. This model adds a time-specific and distance-
specific transition matrix for capturing temporal cyclic effect and
geographical influence, respectively. The model also applies linear
interpolation for the training of the transition matrix. In another
recent work, Yang et al. [41] proposed a model called Flashback
in which they use Basic RNN. The model uses sparse user mobility
data by focusing on rich spatio-temporal contexts and doing flash-
backs on hidden states in RNNs. Furthermore, the model uses the
weighted average of historical hidden states for better capturing
the spatio-temporal effects. Additionally, the paper also uses user
embedding for considering user preferences. Zhao et al. [42] pro-
posed Adaptive Sequence Partitioner with Power-law Attention
(ASPPA) model to learn the latent structures of the check-in
sequences. The idea is a blend of Adaptive Sequence Partitioner
(ASP) for texts by Griffiths et al. [69] and the stacked RNN architec-
ture of El et al. [70]. The paper aims to automatically detect and
identify each semantic subsequence of POIs and discover their
sequential patterns. The model is designed to be a stacked RNN
and it adopts a binary boundary detector to control the pattern
of cell update. This model uses the Power-law Attention (PA)
mechanism to integrate spatial and temporal contexts of each
check-in into the model. The output layer consists of two fully con-
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nected layers and a drop-out layer. Since most of the POI recom-
mendations are designed upon a cloud-based paradigm, there are
many disadvantages including privacy concerns. To alleviate these
problems, Wang et al. [43] proposed Light Location Recom-
mender System (LLRec). Here the authors introduced teacher
and student models. The teacher model is deployed on the server
whereas the student model is deployed on the user mobile devices.
The student model will fetch the pre-trained model from the ser-
ver. And a user can get the next POl recommendation by using
the pre-trained model without sending data to the teacher model.
However, the storage and computational capabilities in mobile
devices are very limited. Consequently, the student model must
be efficient, lightweight, and fast. For getting a lightweight and fast
model, LLRec uses FastGRNN [71]. The parameters of this model
are further compressed by using the tensor-train format [72]. Fur-
thermore, the knowledge distillation framework [73] is used to
improve prediction quality with very limited data. Time-specific
and distance-specific transition matrices in vanilla FastGRNN are
used for capturing spatio-temporal correlations between two adja-
cent check-ins. On the other hand, a powerful and computationally
intensive teacher model can be deployed in the cloud. In addition,
the teacher model uses an attention mechanism to learn user pref-
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Table 2
Categorization of papers.
Category Subcategory Year Reference
Basic RNN - 2016 ST-RNN[40]
2018 MCI-DNN[76]
2020 Flashback[41], ASPPA[42], LLRec[43], DRLM[75]
LSTM Basic LSTM 2018 TMCA[45], SLSTM[85]
2019 LSPL[77], ASTEN[79], ATST-LSTM[82], MMR[83], SGBA[84]
2020 PLSPL[78], LSTPM[44], iMTL[46], CatDM[47], ARNN[80], STAR[81]
Bi-LSTM 2020 GT-HAN(86], t-LocPred[88], CAPRE[89]
Modified LSTM 2018 HST-LSTM[90]
2020 STGN[91]
Self-Attention 2020 GeoSAN[51], SANST|[52]
GRU - 2018 DeepMove|[48], CARA[49]
2019 MGRU[50]
Graph Embedding - 2016 GE[94]
2017 STA[53]
2018 JLGE[96]
2019 RELINE[54]
2020 DYSTAL[55], HCT[100], UP2VEC[103], HMRM[102]
GAN - 2019 Geo-ALM[104], APOIR[105]
2020 AdattTUL[106]
Others - 2017 Geo-Teaser[26], LCE[108]
2018 CAPE[109], ST-DME[110]
2019 Bi-STDDP[111], TEMN][112], SSSER [38]
2020 HME[113], MPR[114], PGIM[115], CEM [39]

erences and converts textual content of POIs into low dimensional
embeddings via Word2Vec [74]. Besides, Huang et al. [75] and Liao
et al. [76] also extensively used the RNN architecture in their POI
recommendation model.

6.2. LSTM models

Since RNN models cannot capture long-term dependencies,
Long-Short Term Memory (LSTM) [63] has been extensively used
in the recent works in POI recommendations. Most of the models
use the basic unaltered LSTM for their predictions. Some of the
models modify the basic LSTM model or use the bidirectional vari-
ant for better capturing the POI domain-specific factors. To further
improve long-term dependency modeling, attention mechanisms
have also been used alongside LSTM. A detailed discussion of dif-
ferent kinds of LSTM based POI recommendation models are given
below.

6.2.1. Basic LSTM

Here we discuss the state-of-the-art models that use the basic
LSTM model in their novel POI recommendation model. We start
our discussion on the Basic LSTM model with the model proposed
by Li et al. [45] called Temporal and Multi-level Context Atten-
tion (TMCA) that uses LSTM based encoder-decoder network and
three types of attention: multi-level context attention (micro,
macro) and temporal attention. The paper introduces two attention
mechanisms to select relevant historical and contextual factors.
The model also uses embedding to incorporate heterogeneous con-
textual factors in a unified way.

For capturing both long-term and short-term preference Wu
et al. [77] proposed Long- and short-term preference learning
model (LSPL). LSPL has two modules i.e., (1) the long-term module
consists of embedding layer and attention layer and captures the
long-term preference of a user by learning contextual features of
POIs; (2) the short-term module uses two separate LSTM modules:
one for location level and other for category level and captures
sequential behavior of a user. Then all of them are combined to
predict the next POL

The authors of LSPL [77] extended their work by proposing Per-
sonalized Long- and Short-term Preference Learning (PLSPL)
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[78] model. PLSPL adds a user-based linear combination unit with
their existing LSPL model, which captures the personalized prefer-
ences for different users by learning the personalized weights over
long- and short-term modules.

Based on embedding, LSTM, and an attention mechanism, Doan
et al. [79] proposed Attentive Spatio TEmporal Neural (ASTEN)
model. ASTEN embeds the POIs and represents a check-in effi-
ciently. LSTM uses the POI and check-in representation and along
with the attention mechanism which captures the sequential, tem-
poral, and geographical influence. The model addresses the noise in
user-trajectory data by attention mechanism.

Sun et al. [44] proposed Long and Short-Term Preference
Modeling (LSTPM) by modifying basic LSTM models. LSTPM
divides all check-ins into several trajectories. The model actually
develops three modules including the long-term preference mod-
eling, the short-term preference modeling, and the prediction
module. Long-term preference modeling uses all the trajectories,
short-term preference modeling uses the last trajectory and com-
binedly predicts the next POIL. Another important aspect of the next
POI recommendation is that the next POI does not depend only on
the recent check-in; however, it can depend on any earlier check-
in. But RNN/LSTM based approaches have the drawback of being
unable to model the relations between two nonconsecutive POlIs.
For capturing this effect the model uses a geo-dilated LSTM
scheme along with basic LSTM in short-term preference modeling.

Zhang et al. [46] proposed Interactive multi-task learning
(iMTL), which uses a two-channel encoder and a task-specific
decoder. The two-channel encoder (temporal-aware activity and
spatial-aware location preference encoders) aims to capture the
sequential correlations of activities and location preferences. The
representations encoded by the LSTM are utilized in the task-
specific decoder to interactively perform the prediction tasks. A
novel contribution of this paper is that they focus on the collective
POIs. Suppose, [; is a building and each building contains many
individual apartments i.e., [, s, l4, 5, then the model denotes I; as
collective POl and L, I3, 14, Is as individual POIs. This paper proposes
a fuzzy characterization strategy for better prediction of individual
POI from a collective POL

Most of the POI recommendation models only predict the loca-
tion of POI ignoring the timestamp but Yu et al. [47] proposed
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Model, Venue year [ref]

Method summery

Performance

ST-RNN, AAAI 2016 [40]
Flashback, IJCAI 2020
[41]

ASPPA, IJCAI 2020 [42]

LLRec (Teacher), WWW
2020 [43]

TMCA, ICDM 2018 [45]

LSPL, CIKM 2019 [77]

PLSPL, TKDE 2020 [78]

ASTEN, PAKDD 2019
[79]

LSTPM, AAAI 2020 [44]

iMTL, IJCAI 2020 [46]

CatDM, WWW 2020
[47]

ARNN, AAAI 2020 [43]

GT-HAN,
Neurocomputing
2020 [86]

t-LocPred, TKDE 2020
[88]

CAPRE, SDM 2020 [89]

HST-LSTM, IJCAI 2018

[90]

STGCN, AAAI 2019 [91]

GeoSAN, KDD 2020 [51]

SANST, arXiv 2020 [52]

DeepMove, WWW 2018
[48]

CARA, SIGIR 2018 [49]

MGRU, JAIHC 2019 [50]

GE, CIKM 2016 [94]

STA, arXiv 2017 [53]

JLGE, DSAA 2018 [96]

RELINE, arXiv 2019 [54]

Use time-specific and distance-specific transition matrix for
capturing temporal cyclic effect and geographical influence
respectively.

Model sparse user mobility data by doing flashbacks on hidden states
in RNNs and uses the weighted average of historical hidden states for
better capturing spatio-temporal effects.

Automatically identify the semantic subsequnce of POIs and
discovers their sequential patterns by hierarchically learning the
latent structure from check-in list and power-law attention
mechanism.

Capture long-term, short-term preferences, textual feature of POIs
and complex dependencies among user preferences by using
embedding, recurrent component and attention mechanism.
Capture complex spatial and temporal dependencies among historical
check-in activities by using LSTM based encoder-decoder model,
attention mechanism and embedding method.

Capture both sequential and contextual information via long-term
and short-term preference learning.

Extend their previous work LSPL [77] by introducing user-based
linear combination unit which better captures user preferences.
Capture the sequential, temporal and geographical influence by using
LSTM and attention mechanism.

Capture long-term preference modeling by using a non-local network
and short-term preference modeling by using geo-dialated LSTM.
Use a two-channel encoder and a task-specific decoder for capturing
the sequential correlations of activities and location preferences.

capture temporal influence, geographical influence and overcome
data sparsity by using two LSTM based deep encoder, two filter,
metric embedding and attention mechanism.

Capture data sparsity by using new concept called transition
regularity. Also capture sequential, spatial, temporal, semantic
influence by using embedding, knowledge graph, LSTM and attention
mechanism.

Capture great variation in geographical co-influence across POIs,
temporal dependency and sequence dependency in check-in list by
using embedding layer, Bi-LSTM and attention mechanism.

capture a users’ coarse-grained spatiotemporal movement pattern by
using CNN and ConvLSTM and fine-grained POI check-in information
by using spatial-aware memory-augmented LSTM with time-aware
attention.

Capture the various perspectives of user about POIs along with
content-aware and geographical user behavior pattern by using
character-level CNN, multi-head attention, Bi-LSTM and MLP.
Propose a new Spatial-Temporal LSTM (ST-LSTM) model for resolving
data sparsity and also use hierarchical model using st-LSTM to encode
the periodicity of people’s movement.

Modify the basic LSTM model slightly by introducing new gates and
cell to capture short-term and long-term preference easily.

Resolve the sparsity issue by introducing a new loss function and
represent the hierarchical gridding of each GPS point with a self-
attention based geography encoder for better use of geographical
information.

Capture the spatial-temporal and sequential patterns by using
embedding, self-attention network (transformer network), Bi-LSTM.
Capture the complex dependencies and multi-level periodicity nature
of human by using embedding, GRU and attention mechanism.
Capture the different types of impact of different contextual
information by using embedding, GRU and two gating mechanism.
Capture dynamic and transition context using Multi-GRU (Two
special gate are added with GRU).

Capture data sparsity, context awareness, cold start, dynamic of
personal preference by using the embedding of four graphs into a
shared low dimensional space.

This paper generalizes the knowledge Graph Embedding and takes
location and time as a spatiotemporal pair for connecting users and
POls.

Jointly learn the embeddings of the users and the POIs into the same
latent space from the six informational graphs using LINE model[97].
This paper extends the previously discussed paper [96] by adding two
new networks: i.e., stay points and routes.
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Gowalla: Rec@5'=0.1524, Rec@10=0.2714. GTD: Rec@5=0.4986,
Rec@10=0.6812

Foursquare: Acc’@5=0.5399, Acc@10=0.6236. Gowalla:
Acc@5=0.2754, Acc@10=0.3479.

Foursquare (US): Acc@10=0.3371, Acc@20=0.3950. Gowalla:
Acc@10=0.2947, Acc@20=0.3573.

Foursquare: Acc@10=0.3542, Acc@20=0.4594 Gowalla:
Acc@10=0.3874, Acc@20=0.4781

Gowalla: Rec@5=0.21926, Rec@10=0.27725. Foursquare:
Rec@5=0.02870, Rec@10=0.04809.

Foursquare (NYC): Prec’@10=0.3901, Prec@20=0.4461 Foursquare
(TKY): Prec@10=0.3986, Prec@20=0.4596.

Foursquare (NYC): Prec@10=0.3953, Prec@20=0.4475 Foursquare
(TKY): Prec@10=0.4020, Prec@20=0.4664.

Foursquare (US): Rec@5=0.328, Rec@10=0.414 Foursquare (EU):
Rec@5=0.281, Rec@10=0.35 Gowalla: Rec@5=0.152, Rec@10=0.266
Foursquare (NY): Rec@5=0.3372, Rec@10=0.4091 Gowalla:
Rec@5=0.2021, Rec@10=0.2510

POI Prediction: Foursquare (CLT): Rec@10=0.0534, Map“@10=0.0238
Foursquare (CAL): Rec@10=0.0691, Map@10=0.0443 Foursquare
(PHO): Rec@10=0.0769, Map@10=0.0352

Foursquare (NYC): Rec@5=0.2407, Rec@10=0.3113 Foursquare
(TKY): Rec@5=0.2148, Rec@10=0.2739.

Foursquare (NY): Acc@10=0.4162, Acc@20=0.4393 Foursquare (TK):
Acc@10=0.4285, Acc@20=0.4864 Gowalla (SF): Acc@10=0.2336,
Acc@20=0.2530

Foursquare: AUC8=0.9661, acc@5: 0.13-0.15, acc@10: 0.17-0.19,
acc@20: 0.23-0.25 (depending on latent dimensionality)

Gowalla: MRR*=0.247 (C=6, all), Weeplaces: MRR=0.277 (C=6, all),
Brightkite: MRR=0.388 (C=4, all)

Foursquare: Rec@5=0.1724, Rec@10=0.2084 Instagram:
Rec@5=0.2934, Rec@10=0.3588

Baidu Map: Acc@10=0.4847, Acc@20=0.5657

Foursquare (CA): Acc@5=0.1308, Acc@10=0.1612. Foursquare (SIN):
Acc@5=0.2737, Acc@10=0.3017. Gowalla: Acc@5=0.1644,
Acc@10=0.2020. Brightkite: Acc@5=0.4953, Acc@10=0.5231.
Foursquare: Acc@5=0.3735, Acc@10=0.4867. Gowalla:
Acc@5=0.4951, Acc@10=0.6028. Brightkite: Acc@5=0.5258,
Acc@10=0.6425.

Gowalla: Acc@10=0.2273, Los Angeles: Acc@10=0.3941, Singapore:
Acc@10=0.2417

Foursquare (NY): Rec@5=0.3372, Rec@10=0.4091. Gowalla:
Rec@5=0.2021, Rec@10=0.2510

Foursquare: Acc@10=0.8851, Yelp: Acc@10=0.5587, Brightkite:
Acc@10=0.7385

Foursquare: Rec@10=0.9214, Rec@15=0.9214 Gowalla:
Rec@10=0.8512, Rec@15=0.8765

Foursquare: Acc@10=0.372, Acc@20=0.435. Gowalla: Acc@10=0.462,
Acc@20=0.533.

Foursquare: Acc@10=0.439, Acc@20=0.486. Gowalla: Acc@10=0.488,
Acc@20=0.540.

Foursquare: Acc@10=0.410, Acc@20=0.462. Weeplaces:
Acc@10=0.488, Acc@20=0.536.

Foursquare: Acc@10=0.410, Acc@20=0.462. Weeplaces:
Acc@10=0.488, Acc@20=0.536. Gowalla: Acc@10=0.518,

(continued on next page)
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Model, Venue year [ref] Method summery

Performance

Geo-Teaser, WWW
2017 [26]

Use Skip-Gram model for temporal POl embedding and Bayesian
Personalized Ranking for pairwise ranking of POIs. A unified

Acc@20=0.556.
Foursquare: Prec@5=0.13, Prec@10=0.1, Rec@5=0.15, Rec@10=0.2
Gowalla: Prec@5=0.16, Prec@10=0.13, Rec@5=0.07, Rec@10=0.12

framework combines the temporal POl embedding and pairwise

ranking model.

DYSTAL, Information
Processing and
Management 2020
[55]

HCT, Information
Sciences, Elsevier
2020[100]

APOIR, 2019 [105]

embedding method and dynamic factor graph model.

dependencies between POIs and categories

Capture complex spatio-temporal patterns of visiting behaviors by
jointly learning the effects of users’ social relationships, textual
reviews, and POIs’ geographical proximity using a network

Utilize Skip-Gram model to model the categorical transitions at
different layers of categorical hierarchies as well as the hierarchical

Use matrix factorization and GRU to learn user preferences and train

Foursquare (SIN): Acc@10=0.232, Rec@10=0.152, Yelp:
Acc@10=0.206, Rec@10=0.098

Foursquare(SIN): Prec@5=0.613 Rec@5=0.0403 Foursquare(NYC):
Prec@5=0.0585, Rec@5=0.0352 Foursquare(LA): Prec@5=0.0653,

Rec@5=0.0305

Yelp: Prec@5=0.1, Rec@5=0.16, MAP@5=0.233, NDCG°@5=0.094

two competitive component: recommender and discriminator to

generate prediction.
CAPE, [JCAI 2018 [109]
and generates their own dataset.

TEMN, KDD 2019 [112]

HME, SIGIR 2020 [113]

Use text content layer and check-in content layer for embeds the POIs

Capture both neighbourhood-based and global preferences by using a
combination of supervised and unsupervised learning.

Capture POI sequential transitions, geographical, semantic and user
preferences by using hyperbolic metric embedding along with

Poincaré ball and Einstein midpoint aggregation method.

With STELLAR: Rec@5=0.2384, Rec@10=0.2989 With LSTM:
Rec@5=0.2412, Rec@10=0.3054 With GRU: Rec@5=0.2433,
Rec@10=0.3079 With ST-RNN: Rec@5=0.2239, Rec@10=0.2601
WecChat (GPR): TEMN (GPR): Acc@5=0.70389, Acc@10=0.81752.
TEMN (CPR): Acc@5=0.72876, Acc@10=0.83398.

Foursquare (NYC): Rec@5=0.0962, Rec@10=0.1371 Foursquare
(TKY): Rec@5=0.1527, Rec@10=0.2172. Gowalla (Houston):
Rec@5=0.1533, Rec@10=0.2318

T Recall@K is the presence of the correct POl among the top K recommended POIs [44].
2 Acc@k is 1 if the visited POI appears in the set of top-K recommendation POIs and 0 otherwise [91]. The overall Acc@K is calculated as the average value of all testing

instances. Also known as Accouracy@K or Hit Rate@k or Hit Ratio@k or HR@k.
3

4
5
6

Category-aware Deep Model (CatDM) which predicts POIs that
are likely to be visited by users in the next 24 hours. CatDM con-
tains (1) metric embedding that learns the latent features of a user,
POI, POI category, and time; (2) first deep encoder for capturing
user preferences in POI categories; (3) two filters for reducing
search space to generate candidates; (4) another deep encoder
for user preferences in POIs, and (5) a module for ranking the can-
didate set. For ranking candidate set this model considers four cor-
relations simultaneously i.e., the correlation between user and POI,
the correlation between the user and POI category, the correlation
between POI and temporal influence, and the correlation between
POI and user’s current preferences. The model uses POI categories
and geographical influence for overcoming data sparsity. The
model also uses an attention mechanism for getting better results.

Let us assume that [y, I, 3 are three locations and [, is nearby to
I;. Now, if a check-in from [, to I3 presents in a user check-in list
then after visiting /4 it will most likely to visit L. This type of situ-
ation is called transition regularity. Most of the existing POI recom-
mendation methods capture sequential regularity only. On the
other hand, Gua et al. [80] proposed Attentional Recurrent Neural
Network (ARNN) model which captures both sequential and tran-
sition regularities for resolving sparsity problem. ARNN consists of
several layers i.e., (1) Neighbor discovery layer: neighbors are
extracted from heterogeneous data by using knowledge graph
(KG) and meta-path; (2) Embedding Layer: transforms the sparse
features of check-in sequence into dense representation and learns
the spatio-temporal features, semantic context by using multi-
modal embedding layer; (3) Attention layer: calculates the similar-
ity between the current location and each neighbor and capture
the transition regularities of the neighbors; (4) Recurrent layer:
captures higher-order sequential regularity by using LSTM. Besides
these models, Wang et al. [81], Huang et al. [82] and Li et al. [83]
used LSTM and attention layers for POI prediction. Yang et al.
[84] used LSTM and embedding layers for the next POl recommen-
dation. Another model called SLSTM [85] used stacked LSTM and
embedding layers for sequential check-in prediction.
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Precision@K indicates that whether the ground truth POI appears in the top-k recommended POIs [77].

MAP (Mean Average Precision) measures the order of our recommendation list [77].

MRR is the average reciprocal rank of positive examples. This metric reflects the overall ranking ability of the model [42].
NDCG (Normalized Discounted Cumulative Gain) measures the quality of top-K ranking list [44].

6.2.2. Bi-LSTM

Vanilla LSTM processes input only in one direction sequentially.
While it helps the models getting sequential information from the
previous inputs, information from later parts of the input cannot be
captured. Bi-directional LSTM (Bi-LSTM) solves this problem by
considering both directions of inputs. Some recent POI recommen-
dation models also use Bi-LSTM to capture sequence features from
both directions to achieve better performance.

From the model GeolE [15] we find that POI has two propensi-
ties i.e., (1) Geo-influence: directs its visitors to other POIs and (2)
Geo-susceptibility: the receipt of visitors from other POIs. By con-
sidering the above-mentioned properties, Liu et al. [86] proposed a
model called Geographical-Temporal Awareness Hierarchical
Attention Network (GT-HAN). For better capturing the great vari-
ation in geographical co-influence across POIs GT-HAN uses three
factors i.e., the geo-influence of POIs, the geo-susceptibility of POIs,
and the distance between POIs. The main part of GT-HAN is an
embedding layer, a geographical-temporal attention network
layer, and a context-specific co-attention network layer. The
embedding layer captures geo-influence, geo-susceptibility, and
semantic effects. The geographical-temporal part explores the geo-
graphical relations between POIs and the temporal dependency of
a check-in list and uses the Bi-LSTM model to capture the sequence
dependence of a user’s check-in list. The context-specific co-
attention network captures dynamic user preferences. GT-HAN
[86] is actually the improved version of a previous model that is
also known as GT-HAN [87] and proposed by the same authors.

Liu et al. [88] proposed time-aware Location Prediction (t-
LocPred) model. This model has two basic parts i.e., ConvAol and
mem-attLSTM. ConvAol uses the CNN layer and ConvLSTM layer
[12] to find the correlations among adjacent Aols (Area-of-
Interest) and time periods within a day and a week respectively.
So, CNN and ConvLSTM work as short-term and long-term
coarse-grained spatial-temporal modeling respectively. On the
other hand, mem-attLSTM captures complex long-term correlation
using a spatial-aware memory augmented LSTM and time-aware
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attention mechanism. So, mem-attLSTM works as a fine-grained
filter that selects the most likely POIs a user will visit.

Chang et al. [89] proposed Content-aware successive POI rec-
ommendation (CAPRE) which is a complete POI recommendation
model that uses user-generated textual content. CAPRE has four
modules: (1) input layer: takes check-in history as input; (2) con-
tent encoder layer: uses character-level CNN (Convolutional Neural
Network), multi-head attention mechanism, and POI embedding
for capturing various perspectives of user interests about POIs;
(3) user behavior pattern: captures content-aware and geographi-
cal user behavior patterns using Bi-LSTM; (4) Output layer: multi-
layer perceptron (MLP) to capture users’ general preferences for
POls.

6.2.3. Modified LSTM

Some models modify the basic LSTM [63]| model for enhanced
POI prediction. The underlying idea is to better capture user
short-term and long-term preferences by modifying the basic
LSTM.

Kong et al. proposed a new LSTM based model [90], namely
Hierarchical Spatial-Temporal Long-Short Term Memory (HST-
LSTM). HST-LSTM uses a hierarchical model to encode the period-
icity of people’s movement. This model captures users’ historical
visiting sequences in an encoder and decoder manner which
improves the performance of POI recommendation. They add
spatial-temporal factors into the gates of the basic LSTM model
which naturally combines spatial-temporal influence into the basic
LSTM model for resolving data sparsity issues.

Zhao et al. [91] proposed Spatio-Temporal Gated Network
(STGN) that modifies the basic LSTM [63] to capture short-term
and long-term preference easily. This model adds four new gates
i.e., two for long-term preferences and the other two for short-
term preferences. This model also adds a new cell state. So, in
the proposed model, there is one cell state for short-term prefer-
ences and one cell state for long-term preferences. STGN model
is further improved by using coupled input and forget gates called
STCGN (Spatio-Temporal Coupled Gated Network). STCGN reduces
the number of parameters and thus this model can be trained
easily and improves efficiency. This model is further improved by
the authors, which is named as STGN [92].

6.2.4. Self-attention

Following the success of self-attention in language modeling,
state-of-the-art POl recommendation models have leveraged this
powerful approach to achieve best in class performance. Among
them, Lian et al. [51] proposed Geography-aware sequential rec-
ommender based on the Self-Attention Network (GeoSAN),
which uses a geography-aware self-attention network and geogra-
phy encoder. The attention network consists of an embedding
layer, a self-attention encoder, a target-aware attention decoder,
and a matching function. The geography encoder uses map grid-
ding and GPS mapping for encoding GPS location as quad keys.
To address the sparsity challenge, the paper proposes a weighted
binary cross-entropy loss function based on importance sampling,
so that informative negative samples are more weighted.

In another work, Guo et al. [52] proposed a model - self-
attentive networks along with spatial and temporal pattern
learning for next POl recommendation (SANST). SANST is actu-
ally a modification of the model SASRec [93] which uses a two-
layer transformer network [67]. SASRec does not capture spatial
and temporal patterns. So, for capturing spatial patterns, SANST
updates the embedding of check-ins by adding the location of
the checked-in POI. Since the coordinate representation of a POI
location is sparse, the model discretizes the whole data space with
a grid such that POI locations are represented by the grid cell IDs.
Grid Cell IDs are learned using GeoHash encoding and Bi-LSTM net-
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work. For capturing temporal effect SANST adds a parameter in the
self-attention network which is computed using the time differ-
ence between two check-ins.

Analyzing LSTM Based models:

By deeply analyzing all the proposed models of this section we
develop a generalized model in this LSTM paradigm, which is
shown in Fig. 5. A detailed description of different key parts of this
generalized LSTM model with the commonality and disparity
among other models is given below.-

o Input: The input of all the models is a check-in list. Some papers
[44,80,87,90] divide the check-in list into trajectories. Each tra-
jectory consists of a sequence of POIs visited by the user. This
type of modeling helps the model to capture the temporal and
short-term user preferences.

¢ Encoding: One of the main challenges in the next POI recom-
mendation problem is data scarcity. To resolve the data scarcity
issue, existing techniques use embeddings that map a higher-
dimensional sparse data space into a lower-dimensional dense
data space. For this reason, most of the papers [45,77-79,44,4
6,47,80,87,89] use embedding layers preprocess the check-ins.
Along with the Fig. 5: Generalization of LSTM Models embed-
ding layers, TMCA [45] uses multi-level context attention to
identify relevant historical check-ins and contextual factors.
ARNN [80] utilizes knowledge graphs to find relevant neigh-

Prediction

\
Post Processing
(Feed-forward network, linear combination unit,
task-specific decoder, multi-layer perception, etc)
J
A
4 N
LSTM Layer
(Spatial, temporal, bidirectional, geo-dilated,
long-term, short-term, modified, etc)
S J
N
4 N
Encoding
(Embeddings, char-CNN, multi-head attention,
multi-level context attention, multi-modal embeddin)
\ J

A

Input

(POI check-in list)

Fig. 5. Generalization of LSTM models.
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bors. CAPRE [89] makes use of character level CNN and multi-
head attention mechanism for capturing various perspectives
of users’ interests about POIs.

LSTM Layer: LSTM layers are highly effective in capturing both
long and short-term preferences. Leveraging this property,Wu
et al. [77,78] use LSTM for capturing shortterm preferences.
Sun et al. [44] incorporate LSTM for capturing long-term prefer-
ences and geo-dilated LSTM for capturing both geographical
and temporal factors. Liu et al. [87] and Chang et al. [89] utilize
Bi-LSTM for better capturing of user behavior pattern. Some
researchers modified the basic LSTM cell to get better predic-
tions. HSTLSTM [90] of Kong et al. introduces spatio-temporal
factors into the existing three gates of the basic LSTM. Zhao
et al. modified the basic LSTM in STGN [91] where their model
has two time gates and two distance gates for capturing both
short-long term interests of interval and distance. So, both of
the models use modified versions of the basic LSTM for captur-
ing the aspects of LBSNs.

Post Processing: Similar to the meaning of the word ‘attention
in natural language processing, the attention mechanism in
DNN pays attention to the portion of the data that is more rel-
evant. So, in this post-processing layer, [77-79,44,46,47,80,87]
use attention for eliminating noise and better POl recommenda-
tion. Along with the attention mechanism, the model [44] uses
some non-local networks for capturing long-term preferences.
However, [89] uses multi-layer perceptron for capturing users’
general preferences and [46] uses a task-specific decoder for
performing the next activity, POI type and location prediction
tasks.

¢ Prediction: This final layer is used to recommend the next POIs.

6.3. GRU

RNN shows a great promise for analyzing time series data and
LSTM helps in capturing short and long-term effects of visiting
POIs. However, both RNN and LSTMs tend to suffer from cold start
problems. Most RNN models rely on the last hidden layer which
limits the learning of user information from the hidden layers. To
solve such cases, a modified form of LSTM- GRU [64] has been
introduced in many POI recommendation models. The GRU has
fewer parameters to learn comparing to LSTM cells but it has addi-
tional gates such as forget gate to compensate for the problems
mentioned above alongside solving exploding and vanishing gradi-
ent problems.

A popular model called DeepMove is proposed by Feng et al.
[48] . DeepMove actually predicts human mobility which is very
similar to our POl recommendation. DeepMove has two modules
i.e., (1) Multi-modal Recurrent Prediction Framework: extract fea-
tures by jointly embedding spatiotemporal and personal feature
into a dense representation, which is then fed into GRU unit to
model long-range and complex dependencies in a trajectory
sequence; (2) Historical Attention Module: captures multi-level
periodicity of human mobility.

Most of the model considers identical impact from different
types of contexts on the users’ preferences. But their impacts are
not identical. To solve this problem Manotumruksa et al. [49] pro-
posed Contextual Attention Recurrent Architecture (CARA)
model. CARA has four layers i.e., input layer, embedding, recurrent
layer, output layer. In the recurrent layer, this model uses GRU. For
capturing different contextual impact on the users’ preferences this
model uses two types of gating mechanisms i.e., (1) Contextual
Attention Gate (CAG): controls the influence of ordinary and tran-
sition contexts on the users’ dynamic preferences and (2) Time-
and Spatial-based Gate (TSG): considers the time intervals and
geographical distances between successive check-ins to control
the influence of the hidden state of previous GRU units.
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Kala et al. proposed [50] Multi-GRU (MGRU) which modifies
the basic GRU unit by adding two additional gates for a better rec-
ommendation. The first added gate is Dynamic Contextual-
Attention-Gate (DCAG-o) which captures the effect of dynamic
contexts like - time of the day, companion, user’s mood, etc. The
other gate is Transition-Contextual-Attention-Gate (TCAG-f) cap-
tures the effect of transition contexts like - time interval and geo-
graphical distance from past POI to future POl. MGRU has three
layers i.e., (1) input layer: pre-process and embeds check-in
sequence; (2) recurrent layer: captures sequential patterns using
MGRU; (3) output layer: recommend the next POL

6.4. Graph embedding

Some recent techniques leverage the potentials of Graph
Embeddings (GE) that learn low-dimensional key features of the
dataspace modeled as different forms of graphs such as POI-POI,
user-POI, and POI-time.

Xie et al. [94] proposed GE that uses graph embedding for rec-
ommending next POI. GE jointly captures the sequential effect,
geographical influence, temporal cyclic effect, and semantic effect
in a unified way using four bipartite graphs. POI-POI captures
sequential effect, POI-Region graph captures geographical influ-
ence, POI-Time graph captures temporal cyclic effect and POI-
Word graph captures semantic effect. The model embeds these
four relational graphs into a shared low-dimensional space. Then
this model computes the similarity between a users’ query (users’
embedding, query time, and location) and the POIs that are not vis-
ited by that user. Most similar POIs are taken for the
recommendation.

Liu et al. [53] proposed SpatioTemporal Aware (STA) which
generalizes knowledge Graph Embedding [95] in their model. GE
[94] embeds both users and POIs in a common latent space. The
users and POIs are inherently different objects so that approach
is unnatural. On the other hand, STA takes location and time as a
spatiotemporal pair (time, location) and uses the embedding of this
pair as a relationship for connecting users and POlIs.

Christoforidis et al. [96] proposed Jointly Learn the Graph
Embeddings (JLGE) which uses six informational graphs. They
are two unipartite (user-user and POI-POI) and four bipartite
(user-POlI, user-time, POI-user, and POI-time). This model consists
of a three-step process. In the first step, the model builds informa-
tion graphs and weights the edges. In the second step, the model
jointly learns the embeddings of the users and the POIs into the
same latent space from these six informational graphs using the
LINE model [97]. Finally, in the third step, the model personalizes
the POl recommendations for each user by tuning the influence
of the participation networks for the final suggestions of the target
user.

The authors of the JLGE [96] model extended their work by
introducing a new model called Recommendations with multiple
Network Embeddings (RELINE) [54|. The model introduces two
new networks: i) Stay Points, which represents the locations of
the user stayed the most, and ii) Routes, the path followed when
visiting POIs. Additionally two new bipartite graphs i.e., user-
route and POI-stay points are added with the previous JLGE [96]
model for better capturing the users’ preference dynamics.

In another work, Xiong et al. [55] proposed a semi-supervised
learning framework called Dynamic Spatio-temporal POI recom-
mendation (DYSTAL). DYSTAL has two key components: a net-
work embedding method and a dynamic factor graph model. The
network embedding method jointly learns the embedding vectors
of users and POIs of three subgraphs i.e., POI-POI, user-POI, and
user-user to excavate complex spatio-temporal patterns of visiting
behaviors. The Dynamic factor graph model captures different fac-
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tors including the correlation of users’ vectors and POIs’ vectors
from the previous embedding layer via the Factor Graph Model
(FGM) [98]. This model also considers the textual reviews of users
by using SentiStrength [99] tool.

Zhang et al. [100] propose Hierarchical Category Transition
(HCT) which extends the Skip-Gram [74] model to learn the hier-
archical dependencies between POIs and categories and the hierar-
chical category transition. HCT models the dynamic user
preference by considering recently visited POIs and the associated
hierarchical categorical sets. They formulated the dynamic user
representation by incorporating the representations of POIs as well
as the associated hierarchical category sets. Besides these models,
Liu et al. [101] propose a model based on bi-weighted low-rank
graph for providing POl recommendations for a specific time per-
iod. Chen et al. [102] use embeddings and context filtering for
modeling spatial trajectories. Furthermore, Qiao et al. [103] utilize
embeddings for predicting next POls.

Analyzing Graph Embedding Based Models:

From the discussion of the aforementioned graph embedding
based models, we find that all the models basically follow an iden-
tical structure which is shown in Fig. 6.

The graph embedding based models use different types of
graphs that include POI-POI [94,96,54,55], POI-region [94], POI-
time [94,96,54], POl-word [94], User-User [96,54,55], user-POI
[96,54,55], POI-user [96,54], user-time [96,54|, user-route [54]
and POI-stay point [54] graphs. By using the embeddings of these
above mentioned graphs, the models enhanced their recommenda-
tion performance for recommending the next POI.

6.5. GAN

Generative Adversarial Networks (GAN) [68] is a popular model
in deep learning where two Neural Network models compete with
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Fig. 6. Generalization of graph embedding models.
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each other for giving better predictions. Few papers use GAN in POI
recommendation because POl recommendation problems do not
necessarily fall under the solvable problem domain of GAN.

Liu et al. [104]| proposed Geographical information-based
adversarial learning model (Geo-ALM) model that uses two mod-
ules: discriminator and generator which are essentially different
but inspired from the conventional GAN. The pairwise ranking is
regarded as a discriminator that tries to predict the ranking rela-
tionship between generated sample pairs and is trained to maxi-
mize ranking samples’ likelihood. The generator continually
generates critical negative samples, which are then coupled with
positive samples, forming training instances. The framework inter-
changeably learns the parameters between two different modules.

Zhou et al. [105] proposed Adversarial POl Recommendation
(APOIR) which combines GAN, GRU, and Matrix factorization for
POI recommendation. GRU and MF combinedly learn both tempo-
ral and sequential preferences of users. Two competitive compo-
nents: recommender and discriminator are alternatively
optimized by training both of them through an objective function
using the learned preferences of users. The discriminator tries to
maximize the probability of correctly distinguishing the true
check-in locations from the generated recommended POIs by the
recommender. Gao et al. [106] also uses GAN networks for identi-
fying individuals by exploiting their trajectories.

Another state-of-the-art method proposed by Li et al. [107] uses
GAN into transfer learning to transfer knowledge across domains.
The model consists of four components: (1) an embedding layer
to learn latent factors, (2) a cross-domain transfer layer for captur-
ing shared private feature extractor, (3) the cross-domain recom-
mendation part for an item recommendation, and (4) the domain
discriminator for preventing domain-specific features to be
transferred.

6.6. Other models

There are some other deep learning POl recommendation mod-
els that use hybrid architectures. In this section, we cover those POI
recommendation models.

Zhao et al. [26] propose Geo-Temporal sequential embedding
rank (Geo-Teaser). Geo-Teaser is based on the Skip-Gram [74]
model which learns the representations of context POIs given a tar-
get POL The model attempts to learn the temporal POl embeddings
by maximizing an objective function. The geographically hierarchi-
cal pairwise preference ranking model uses Bayesian Personalized
ranking to learn the user preference on POIs. The core Geo-Teaser
model is a unified framework that combines the temporal embed-
ding model and the pairwise ranking method.

Chang et al. [109] proposed a somewhat different approach
called Content-Aware hierarchical POl Embedding (CAPE) for
POI recommendation. Most models do not use the text content of
POIs, since most of the datasets do not contain such textual con-
tent. The authors thus generated a new dataset from Instagram
which contains a textual description of POI written by the users.
CAPE actually is a POl embedding model that consists of a check-
in context layer and text content layer. The check-in content layer
captures the geographical influence of POIs, while the text content
layer captures the characteristics of POIs.

A different type of work on missing POI check-in identification
by Xi et al. [111] is also notable in this context. Here, the authors
proposed a model called Bi-directional Spatio-Temporal Depen-
dence and users’ Dynamic Preferences (Bi-STDDP) to capture
complex global spatial information, local temporal dependency
relationships, and users’ dynamic preferences. Bi-STDDP takes
two check-in lists as input; one list for before the missing check-
in, and one for after. Besides, this model also uses user-
embedding, POl-embedding, and temporal patterns in the model.
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Zhou et al. [112] proposed a hybrid architecture called Topic-
Enhanced Memory Network (TEMN). TEMN consists of three
key parts: a Memory Network (MN), Temporal Latent Dirichlet
Allocation (TLDA) [116] and geographical modeling. MN learns
the complex interaction between user and POIs and captures the
neighborhood-based interests of a user. TLDA is an unsupervised
generative probabilistic model which captures temporal prefer-
ences and the inner interest of users. This module provides the
pattern-user probability distribution. The distributions of venues
and time slots associated with each pattern can also be estimated
through TLDA. TLDA and MN can jointly learn the characteristics of
users and POIs. The Geographical model captures the geographical
influence.

Recent researches show that hierarchical structures can be
modeled using hyperbolic representation methods [117-119]. For
that reason, Feng et al. [113] proposed a novel Hyperbolic Metric
Embedding (HME) approach for the next-POI recommendation
task. HME can be divided into two part i.e., (1) Hyperbolic Metric
Embedding: uses Poincaré ball model [118] to learn four different
relationships (POI-POI, POI-User, POI-Category, and POI-Region) by
projecting them in a shared hyperbolic space; (2) Recommending
with Hyperbolic Embeddings: combines the user preferences and
POI sequential transitions in the Poincaré ball model an Einstein
midpoint aggregation method [120,121]. The geographical dis-
tance is also considered in this model because users tend to visit
the POI that is close to them [122].

Along with the aforementioned models, recent works have pro-
posed some advanced models that take advantage of multiple
techniques to improve performance. Chen et al. [123] proposed
pivot-based principles for space transformation and partitioning
so that high dimensional semantic vectors can be rationally
mapped to low dimensional coordinates, Zhang et al. [115] used
embeddings for geographical influence modeling. Wang et al.
[108] used embeddings for predicting the next POls. Ding et al.
[110] used DNN for time-specific POI recommendation. The CNN
models have also been used in POl recommendation in some prior
works [38,39]. Massimo et al. [124] experimented with Inverse
Reinforcement Learning (IRL) [125-127] to analyze the perfor-
mance of IRL in POl recommendation. Besides these models Cai
et al. [128] proposed a novel holistic influence diffusion model that
takes into account both cyber and physical user interactions effec-
tively and practically. Li et al. [129] proposed few-shot learning for
new user recommendation.

Summary of different paradigms of deep learning models:

By analyzing all the aforementioned models, we find a compre-
hensive picture of how different deep learning paradigms have
been utilized to handle different aspects of POl recommendation
models. Since successful recommendation fundamentally depends
on historical POI information, sequential models (i.e., RNN, LSTM)
have been primarily used in recent POl recommendation models.
Among them, LSTM is the most popular approach due to its long-
term sequential information capturing capability. A large body of
works has experimented with minor modifications of LSTMs to
improve long and short-term modeling preferences. Thus,
sequence information capture has been the center of interest in
POI recommendation models. Recent state-of-the-art models are
also leveraging the self-attention transformer mechanism for POI
recommendation, which greatly suppresses the problems associ-
ated with very long sequences. They are also computationally par-
allelizable. Besides capturing historical sequence information,
researchers have also analyzed the spatial influence in this regard.
Due to the nature of check-in data, users and POIs form a relation-
ship graph that can be highly useful to model spatial dependency.
Thus, graph embedding methods have garnered attention in the
past couple of years in POI recommendations. LSTM coupled with
these graph embedding models thus opens up the opportunity to
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capture both sequential and spatiotemporal features from a given
dataset. Advanced models have also utilized adversarial learning
models and specialized embedding methods to enhance the perfor-
mance of the recommendation.

7. POI sequence recommendation

So far we've primarily discussed the next POl recommendation
models. However, some state-of-the-art methods also recommend
a sequence of POIs that are more likely to be visited by the user in
the future. In POI sequence recommendation the input is a
sequence of check-ins or check-in list and the output also a
check-in list. So, we can think of this recommendation as a
sequence to sequence (Seq2Seq) task. Several state-of-the-art
methods have been proposed in recent years for solving the POI
sequence recommendation task. Here we briefly discuss some of
them.

Baral et al. [130] proposed Contextualized Location Sequence
Recommender (CLoSe) which incorporates different contexts (e.g.,
social, temporal, categorical, and spatial) into the hidden and out-
put layer. This model uses either the simple RNN or the LSTM
model. The results show that CLoSe-LSTM performs better than
CLoSe-RNN.

Huang et al. [131] proposed Dynamic Recommendation of POI
Sequence (DRPS) which is based on DNN. This model consists of
an encoder and a decoder module and for getting better perfor-
mance, this model takes into account the POI embedding feature,
the geographical and categorical influences of historical trajecto-
ries, and the positional encoding. This paper also proposed two
new evaluation metrics for better performance evaluation.

In another work, Lu et al. [132] proposed Graph-based Latent
Representation model (GLR) which can capture geographical
influence, temporal influence, user preference, etc. GLR learns the
latent vectors based on word2vec [133] technique. Here, the
authors added user preference, temporal successive transition
influence, geographic influence, and LSTM [63] with GLR model
and propose a new model GLR_GT_LSTM which can capture users’
complex successive transition behavior.

Alongside these models, Wang et al. [134], Baral et al. (HiCaPS)
[135], Lin et al. [136] also proposed different POI sequence recom-
mendation models. On the other hand, Li et al. [137] worked with a
variation of this task, missing POI check-ins prediction by leverag-
ing an attention-based seq2seq generative model.

8. Influential factors

In Section 6, we have highlighted existing research works in the
domain of POI recommendation. In these works, researchers have
tried to figure out the most influential factors that affect POI rec-
ommendation. It is quite difficult to conclude the factors of choos-
ing the next POI, as POl recommendation is greatly affected by
human behavior which changes over time. However, most
researchers agree with some common factors like sequential effect,
geographical influence, semantic effect, social influence, temporal
influence, etc. that affect POl recommendation. These factors are
generally derived from the patterns of the users’ decisions. In this
section, we elaborately discuss these influential factors. In Table 5,
we also summarize how different POl recommendation models
cover these influential factors.

8.1. Sequential effect

The sequential effect of POl recommendation is similar to the
analogy of NLP problems- such as making a sentence where the
next word depends on the previous words.
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Table 4
Descriptions of datasets.
Dataset name Reference Date Region #User #POI #Check-in
Foursquare Flashback [41] Apr 2012-Jan 2014 World 46065 69005 9450342
ASPPA [42] Apr 2012-Sep 2013 US (except Alaska, Hawaii) 49005 206097 425691
LSPL [77], PLSPL [78] Apr 2012-Feb 2013 New York 1083 38333 227428
CatDM [47], ARNN [80], HME [113], Bi-STDDP [111] Apr 2012-Feb 2013 Tokyo 2293 61858 573703
ASTEN [79] - USA 21878 21651 569091
EU 15387 115567 3227845
LSTPM [44] Feb 2010-Jan 2011 New York 934 9296 52983
iMTL [46] Apr 2012-Sep 2013 Charlotte 1580 1791 20940
Calgary 301 985 13954
Phoenix 1623 2441 22620
GT-HAN [86], APOIR [105] Apr 2012-Sep 2013 USA 24941 28593 1196248
CAPRE [89] - - 4163 121142 483813
STGN [91] Jan 2010-Feb 2011 California 49005 206097 425691
Aug 2010-Jul 2011 Singapore 30887 18995 860888
GeoSAN [51] Apr 2012-Jan 2014 World 12695 37344 1941959
DeepMove [48] Feb 2010-Jan 2011 New York 15639 43379 293559
CARA [49] - World 10766 10695 1336278
MGRU [50] Aug 2010-Jul 2011 Singapore 4630 6176 201525
GE [94] Sep 2010-Jan 2011 World 114508 114,508 1434668
STA [53], JLGE [96], RELINE [54] Sep 2010-Jan 2011 USA 114508 62462 1434668
Geo-ALM [104] Aug 2010-Jul 2011 Singapore 2321 5596 194108
DYSTAL [55] - Singapore 74250 - -
HCT [100] - New York City 1982 2454 187750
Geo-Teaser [26] Jan 2011-Jul 2011 World 10034 16561 865647
Gowalla ST-RNN [40] Feb 2009-Oct 2010 World 10997 - 6400000
Flashback [41] Feb 2009-Oct 2010 World 52979 121851 3300986
ASPPA [42] Feb 2009-Oct 2010 World 4996 6871 245157
LLRec [43], RELINE [54] Jan 2009-Aug 2011 World 319063 2844076 36001959
TMCA [45] Feb 2009-Oct 2010 World 22209 50569 1493799
ASTEN [79] Feb 2009-Oct 2010 World 52484 115567 3227845
LSTPM [44] Feb 2009-Oct 2010 World 5802 40868 301080
ARNN [80] Feb 2009-Oct 2010 San Fransisco 170 7340 32058
GT-HAN [86], STGN [91], APOIR [105] Feb 2009-Oct 2010 World 18737 32510 1278274
t-LocPred [88] Jan 2009-Oct 2010 Goteborg (Sweden) 5342 12229 103787
GeoSAN [51] - - 31708 131329 2963373
SANST [52], Geo-ALM [104] Feb 2009-Oct 2010 California, Nevada 10162 24250 456988
MGRU [50] Nov 2009-Oct 2010 Austin 2321 5596 194108
GE [94], STA [53], Bi-STDDP [111] Feb 2009-Oct 2010 World 107092 1280969 6442892
Geo-Teaser [26] Jan 2011-Jul 2011 World 3240 33578 556453
HME [113] Nov 2010-Jun 2011 Houston 4627 15135 362783
Brightkite t-LocPred [88] May 2008-Oct 2010 Tokyo 2263 37196 183298
STGN [91] May 2008-Oct 2010 World 51406 772967 4747288
GeoSAN [51] Apr 2008-0ct 2010 World 5247 48181 1699579
CARA [49] Apr 2008-0Oct 2010 World 14374 5050 681024
WeChat TEMN [112] Sep 2016-Aug 2017 Beijing 28566 13826 509589
75973 28183 5644965
Yelp TMCA [45] Jan 2014-Jun 2017 World 11564 18683 492489
CARA [49] - World 38945 34245 981379
DYSTAL [55] - Las Vegas 337084 26809 1605396
APOIR [105] - World 30887 18995 860888
Baidu HST-LSTM [90] Dec 2015-Dec 2015 Peking - - -
Instagram CAPRE [89], CAPE [109] - New York City 78233 13187 2216631
Weeplaces LLRec [43], JLGE [96], RELINE [54] Nov 2003-Jun 2011 World 15799 971309 7658368
t-LocPred [88] Nov 2003-Jun 2011 New York City 4855 38537 900906

[2,4,94,54] also show that sequential effect puts a major impact
on POl recommendation. Zhang et al. [4] extracted sequential pat-
terns from the location sequences of all users and model them as a
concise location-location transition graph. Then they determine
the transition probabilities in terms of transition counts and outgo-
ing counts. Finally, the model processes the check-in locations
according to their arrival order and incrementally updates the con-
structed location-location transition graph. The sequential proba-
bilities are derived with additive Markov Chain applied on the
location-location graph. Xie et al. [94] designed a fully connected
deep LSTM network for skeleton-based action recognition. This
architecture enables fully exploit the inherent correlations among
skeleton joints to capture sequential effect. Christoforidis et al. [54]
jointly learned the graph embeddings of different information net-
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works in the same latent space. The model is optimized using neg-
ative sampling. All the embeddings of the input bipartite graphs
are integrated into the model.

8.2. Geographical influence

Recent researches show that people tend to visit places that are
close to him/her or are close to the places already visited by that
person. Users who check in a location within a region have a rela-
tively larger probability to visit the places in close proximity. Users
tend to go to stores, marketplaces, or visit picnic spots that are
close to where they live. Also, after visiting a certain tourist spot,
people tend to go to nearby restaurants or malls. Thus, spatial
proximity is a worthy concern to predict users’ next location.
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Descriptions of influential factors.
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Reference

Social
Influence

Semantic
Effect

Sequential
Effect

Geographical
Influence

Temporal
Influence

ST-RNN [40], Flashback [41], LSTPM [44], TMCA [45], DeepMove [48], SANST [52], ASTEN [79], GT-

HAN [87], HST-LSTM [90], STGN [91], Bi-STDDP [111], TEMN [112]

ASPPA [42], iMTL [46], CatDM [47], CARA [49], MGRU [50], LSPL [77], PLSPL [78], ARNN [80], GT-

HAN [86], t-LocPred [88], GE [94]
CAPE [109]
Geo-Teaser [26], GeoSAN [51]
CAPRE [89]
STA [53]
RELINE [54], JLGE [96], APOIR [105]
LLRec (Teacher) [43]
HME [113]
DYSTAL [55]
HCT [100]

I 4 X X 4
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X
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[32,94,44,138,139,109] show great interest in analyzing the
geographical influence for predicting POIs. Ye et al. [32] perform
spatial analysis on real datasets of Foursquare and Whrrl. The
study finds the implication of distance on user check-in behavior
by measuring the probability of a pair of check-ins being within
a certain distance. The study confirmed the above-mentioned
implications of the proximity of POI in predicting the next POI.
The model introduces a collaborative recommendation method
based on the naive Bayes to realize the POI recommendation. The
paper proposes a unified framework to perform collaborative rec-
ommendations that fuse user preference, social influence, and geo-
graphical influence. Furthermore, the model uses a linear fusion
framework to integrate ranked lists provided by the three recom-
mender systems. Kefalas et al. [138] use contextual pre-filtering
of the information to select the most relevant proximate users
for the POI recommendations. The spatial influence of users’
reviews represents the impact of proximate users who reviewed
similar businesses to the target user. The proposed model extends
the item-based contextual filtering in two ways, (i) by leveraging
the proximity factor when computing the similarity of two users
and (ii) by considering the history of proximate user reviews. Liu
et al. [139] introduce a geographical probabilistic factor analysis
framework for POl recommendation. To learn geographical user
preferences, the model encodes the spatial influence and user
mobility into the user check-in process. Furthermore, [139] adopts
a Bayesian probabilistic non-negative latent factor model for
encoding both the spatial influence and personalized preferences.

8.3. Semantic effect

Every POI has some properties and two POls are semantically
close to each other if they have similar properties. Every human
also has his/her own preferences and a person wants to visit those
POIs which are matched to his/her preferences [140]. So, from the
check-in list of a user, we can capture the user preferences and try
to predict those POIs that are semantically very similar to previous
check-ins.

[140,138,77,45,109] are some of the papers that use the seman-
tic information from the datasets to predict the next POI. Kefalas
et al. [138] utilize the textual influence among the reviews that
refer to the similarity between the reviews. Ye et al. [140] use a
semantic annotation technique for POI networks to automatically
annotate all places with category tags. The annotation algorithm
learns a binary SVM classifier for each tag in the tag space to sup-
port multi-label classification. This algorithm extracts features and
handles semantic annotation from places with the same tag and
the relatedness among places. Wu et al. [77] learn the short and
long-term contextual features of POIs and leverage attention
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mechanisms to capture users’ preference. Li et al. [45] propose
an encoder-decoder neural network model that leverages the
embedding method to incorporate heterogeneous contextual fac-
tors associated with each check-in activity, to populate the seman-
tics of check-ins. The paper embeds check-in user and time,
numerical factors, and categorical factors in contexts. Chang et al.
[109] utilize the text content that provides information about the
characteristics of a POI. They also measure the correlation between
words by calculating the Jaccard similarity of POIs in their text con-
tent. The text content layer treats text content as a sentence and
trains the word embedding vector using Word2Vec [74]. All these
works employed different techniques to capture the semantic fea-
tures from the POIs for getting better recommendation
performance.

8.4. Social influence

Humans are social beings. So, the decisions of a person greatly
depend on his/her social status, friends, neighbors, culture, etc.
These social influences affect a person’s interest in visiting a POL
The probability of a user visiting a POI is increased when his/her
friends give good reviews about that POI [109]. To tackle the cold
start problems, the social circle of a new user can be heavily ben-
eficial, and thus, models can learn a user’s preferences by suggest-
ing the same POIs of his/her social circle.

[54,109,138] use social influence to improve their POI predic-
tions. Christoforidis et al. [54] incorporate social influence along-
side spatial and temporal context and combined the graphs into
a unified prediction model. Kefalas et al. [138] try to capture the
social influence using users’ reviews. The users having similar
vocabularies are considered to be related. Here, the social influence
corresponds to the correlation between the target user and others
concerning the lexical analysis of their reviews. The abundance of
works leveraging social influence proves the importance of social
effect in POI recommendation.

8.5. Temporal influence

Human-lives consist of fixed time patterns. A user shows dis-
tinct check-in preferences at different hours of the day and tends
to have similar preferences in consecutive hours than non-
consecutive hours [141]. User activities are influenced by time. A
user will go to a restaurant rather than a bar at noon and people
may tend to go to visit places when a holiday appears.

[142,141,94,54,79] considered the temporal effects in POI rec-
ommendation systems. Gao et al. [141] introduced a temporal
state to represent hours of the day. Then they defined the time-
dependent user check-in preferences using the temporal state.
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The paper proposes a temporal regularization to minimize an
objective function using temporal coefficients. Their proposed
framework, LRT, consists of temporal division, temporal factoriza-
tion, and temporal aggregation. Yuan et al. [142] perform collabo-
rative filtering by exploiting other user’s temporal preferences to
POIs. To capture the fixed routine of users’ daily mobility, the
model splits time into hourly slots and models the temporal pref-
erence to POIs of a user in a time slot by the POIs visited by the user
in this time slot. They leverage a time factor when computing the
similarity between two users and consider the historical check-ins
at a time in the repository. Doan et al. [79] use an attention mech-
anism designed for utilizing spatio-temporal information.

9. Future directions
9.1. Preparing benchmark datasets

While popular check-in datasets like Foursquare, Gowalla, Yelp,
Weeplaces are largely used in the previous works, the sheer scale
of these datasets make them impossible to work with all at once.
Consequently, most of the prior works take only a subset (e.g.
check-ins of a city within a specific timeframe) of one dataset for
evaluation. Furthermore, recent advancements in POl recommen-
dation show that besides check-ins, data from other modalities
such as textual description, user reviews, etc. can improve the rec-
ommendation performance. However, popular datasets do not con-
tain these data which results in the proposal of new datasets (e.g.
Instagram dataset) that contain these data. The variety of datasets
used in different models makes it very difficult to compare the per-
formance against different state-of-the-art models. A benchmark
dataset containing data from various modalities can resolve these
issues creating a solid ground to assess the performance across dif-
ferent models.

9.2. Developing data anonymization techniques for LBSN

Most of the datasets used by the models mentioned in our
paper are from deprecated LBSN platforms such as Gowalla, Bright-
kite, and Weeplaces; and upon the dissolution of such platforms,
the authority of those platforms distributed their datasets for
research purposes. Thus existing datasets used in POI research
are quite old. Such older datasets lack the features that reflect
modern user-behavior and as a result, models trained using such
datasets may not perform as expected on modern social media
platforms. Furthermore, modern social media platforms tend to
restrict their datasets from public usage because of privacy issues.
Researchers need to put more emphasis on collecting anonymous
user data by obfuscating user identity so that the privacy of the
users can be preserved.

9.3. Incorporating online learning

After analyzing different models in this review paper, we have
observed that most of the POI recommendation models in the lit-
eratures use offline learning techniques i.e. techniques that allow
models to be trained only once with the available datasets before
deployment. In a real-world scenario, this strategy is not optimal
because users are continuously generating thousands of new
check-in data every day that carry crucial information about
changes in user preferences. An online learning strategy that can
update the models as new data gets available is thus of significant
importance so that the model can provide optimal recommenda-
tion performance over time even in changing circumstances.
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9.4. Developing privacy preserving POI recommendation techniques

Like many other location-based services, user privacy is a major
bottleneck for the proliferation of POI recommendation systems. In
many cases, users tend to not share their GPS traces because adver-
saries can reveal many sensitive and private information of the
user from those location traces. Thus there is an increasing need
to devise a privacy-preserved POl recommendation system. A cou-
ple of non-deep learning approaches- Liu et al. [143] and Chen
et al. [144] preserve the privacy of user data. However, since these
approaches also require aggregating data from users in a central
location, a lot of privacy concerns still exist. We envision that
POI recommendation techniques can exploit a new domain of
privacy-preserving learning, namely federated learning, that does
not require accumulating user data in any central site.

Essentially, federated learning is a machine learning technique
that trains an algorithm across multiple devices using their local
data samples, without exchanging them. In traditional distributed
learning, all data are distributed across multiple centralized ser-
vers which does not ensure the privacy of user data and data secu-
rity. But in federated learning, a user does not need to share their
data. They can train a model using their local data and share the
model parameters. So, federated learning ensures data privacy
and data sparsity issues. In this context, Wang et al. [43] recently
proposed a model LLRec by generating teacher and student models.
While the idea is close to the notion of federated learning, it does
not fully take advantage of parameter sharing like federated learn-
ing. Thus, developing federated learning-friendly models is an
interesting research direction in this domain.

9.5. Recommending POI for social groups

Previous works mostly focus on personalized POI recommenda-
tions where users’ historical check-ins, as well as other attributes,
are taken into account. However, POl recommendation for a group
of users has mostly been out of focus in the literatures. Recommen-
dation for a social group is significantly different from personalized
POI recommendations, since each group member may have differ-
ent preferences for choosing POIs. The social aspect becomes par-
ticularly important when recommending POIs for a group of
users, which most of the present personalized POl recommenda-
tion models are unable to handle properly. Wang et al. [145] used
matrix factorization and clustering techniques for group POI rec-
ommendation. But a simple model like this fails to utilize external
features which largely limits the model performance. Conse-
quently, a deep learning-based POI recommendation model for
social groups can be particularly helpful for group tourism and
developing such a model can be worth of research interest.

10. Conclusion

In this paper, we have presented a comprehensive survey on
deep learning-based POI recommendation systems. We have pre-
sented insightful findings of a plethora of recent research papers
in this emerging area of research. We have categorized the POI rec-
ommendation models based on different deep learning paradigms
and compare their competitive (dis)advantages. We have also pre-
sented the performance results of these techniques with respect to
different performance metrics for different real datasets. We have
identified different factors that impact the POl recommendations
and provided a tabular analysis of each factor. Finally, we have dis-
cussed a series of future works on POl recommendations that pro-
vide a guideline for new researchers in this domain. To the best of
our knowledge, this work is the first comprehensive review of deep
learning-based POI recommendations.
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