
Towards Scalable Visual Data Wrangling via Direct Manipulation
El Kindi Rezig
University of Utah

elkindi.rezig@utah.edu

Mir Mahathir Mohammad
University of Utah

mahathir.mohammad@utah.edu

Nicolas Baret
University of Utah

nicolas.baret@utah.edu

Ricardo Mayerhofer
Hopara, Inc

ricardo@hopara.io

Andrew McNutt
University of Utah

andrew.mcnutt@utah.edu

Paul Rosen
University of Utah

paul.rosen@utah.edu

ABSTRACT

Data wrangling—the process of cleaning, transforming, and prepar-
ing data for analysis—is a well-known bottleneck in data science
workflows. Existing tools either rely on manual scripting, which
is error-prone and hard to debug, or automate cleaning through
opaque black-box pipelines that offer limited control. We present
Buckaroo, a scalable visual data wrangling system that restruc-
tures data preparation as a direct manipulation task over visu-
alizations. Buckaroo enables users to explore and repair data
anomalies—such as missing values, outliers, and type mismatches—
by interacting directly with coordinated data visualizations. The
system extensibly supports user-defined error detectors and wran-
glers, tracks provenance for undo/redo, and generates reproducible
scripts for downstream automation. Buckaroo maintains efficient
indexing structures and differential storage to localize anomaly
detection and minimize recomputation. To demonstrate the ap-
plicability of our model, Buckaroo is integrated with the Hopara
pan-and-zoom engine, which enables multi-layered navigation over
large datasets without sacrificing interactivity. Through computa-
tional experiments and an expert review we show that Buckaroo
makes visual data wrangling scalable—bridging the gap between
visual inspection and programmable repairs.

1 INTRODUCTION

The promise of data-driven decision-making relies critically on the
quality and readiness of underlying datasets. Yet, before any analy-
sis, modeling, or visualization can occur, practitioners must invest
substantial effort into data wrangling—the process of transforming
raw, messy data into a structured form suitable for downstream
tasks. Despite its importance, data wrangling remains one of the
most labor-intensive and error-prone phases of the data science
lifecycle, accounting for up to 80% of the total project time [14].

Data wrangling involves a wide range of tasks, including pars-
ing, reshaping, deduplication, missing value imputation, anomaly
detection, and type normalization. These tasks are often executed
through manual scripts or ad-hoc spreadsheet operations, introduc-
ing two significant problems: (1) errors introduced during wran-
gling are difficult to detect and propagate silently into downstream
models, and (2) the lack of interactivity and visibility in existing
tools limits user understanding and trust, especially when dealing
with complex group-level anomalies.

Bridging the gap between iterative scripting and visual ex-

ploration is essential. Data wrangling is rarely a one-shot oper-
ation—it is inherently iterative, involving trial-and-error, context-
aware corrections, and domain judgment. While prior work has

proposed automated or script-based approaches to support clean-
ing operations [6], these systems often assume a fixed pipeline
and offer little visibility into how each transformation affects the
dataset, i.e., fixing one error might lead to new errors in the dataset.
This limits their usability in real-world settings where errors are
heterogeneous, subtle, and contextual.

Conversely, visualization tools excel at surfacing structure [16,
18], guiding attention, and enabling human reasoning, but they are
typically detached from the wrangling process itself. That is, they
are used post-hoc for validation rather than as integral components
of repair. This disconnect leads to workflows where users must
constantly switch between error inspection and editing scripts to
fix problems in the data, which is laborious and error-prone. Bucka-
roo bridges this gap by reimagining data wrangling as a visual,
interactive, and iterative process. It allows users to identify and
resolve data anomalies by directly manipulating visual representa-
tions of data groups. Buckaroo automatically detects anomalous
groups—e.g., those with missing values or outliers—maps them to
interactive charts, and offers recommended repairs that can be ap-
plied, visualized, and reverted in real time. This tight integration of
detection, visualization, and repair enables users to understand the
impact of each action across the dataset and supports the inherently
exploratory nature of data preparation.

Transforming visualizations into repair interfaces. A key
technical insight of Buckaroo is to treat visualizations not merely
as passive outputs but as active substrates for user-driven data
transformation. By constructing index structures that link anom-
alies to data groups and anomaly types, Buckaroo enables respon-
sive, bidirectional interactions: users can trigger repairs through
visual selections and observe the systemic consequences instantly.
Moreover, through user-defined detector and repair functions, the
system accommodates domain-specific anomalies while preserving
flexibility and reproducibility through automatic code generation.

Motivating Example. Consider the table in Figure 2, which shows
two groups from a larger dataset: 𝐺1 = {Income | Country =
"Bhutan"} and 𝐺2 = {Income | Degree = "BS"}. Both groups have
Income anomalies, including outliers, missing values, and inconsis-
tent data types.

Lou, a data scientist, is tasked with preparing this dataset for
downstream analysis. Using a traditional workflow—such as im-
porting the data into Python—Lou encounters several challenges:
Sparse anomalies: Errors are scattered and infrequent, making
them hard to detect. Interdependent groups: Fixing an anom-
aly in one group may unintentionally distort others. For instance,

Outliers

User defined types

Built in error types
Missing values Type mismatch

No anomalies

Bhutan

C
ou

nt

C
ou

nt

Lesotho Bhutan Lesotho

1

A

2

BS MS PhD

C
ou

nt

BS MS PhD

C
ou

nt

G1

(Data sample)

This data has a lot of issues! I’ll start by
removing the outliers because they
seem to be driving a lot of the oddities

Hmm It looks like removing outliers
removes too many points, I’ll undo and
use imputation instead

That’s closer to what I wanted! Now to
look at some other dimensions of this
data

Anomaly Summary
12k seems to be quite a
bit different from other
values in the income
column

Remove

Bhutan Lesotho BS MS PhD

C
ou

nt

3

Buckaroo supports 4
chart types: heatmaps,
line charts, scatterplots,
and histograms

Buckaroo draws the user’s attention
to those areas via details on demand
style views. Users click marks to
signal intent to fix.

Buckaroo support flexible
visualization and interaction,
in a manner that surfaces
critical wrangling and error
information to the end user
intuitively and graphically

Users can see the impact
of the wrangling
operations in real-time
for both the current state
and suggestion options

B

The system previews various
possible wrangling operations

G2

Figure 1: An overview of repairing an error through Buckaroo’s user interface. A highlights a user working through iterative

and backtrack-laden process of cleaning a dataset. B shows the full interface for a sample of the StackOverflow dataset. Each

error type has a distinct color (e.g., red groups correspond to average anomalies), Upon selecting the group, Buckaroo shows a

list of wrangling/repair actions on the right and shows a visual preview of the chart after the repair.

removing all zero-income rows from 𝐺1 could leave 𝐺2 with in-
sufficient data. Iterative debugging: Writing and refining data
cleaning scripts requires multiple trial-and-error cycles to validate
correctness and completeness [8].

By contrast, if Lou uses Buckaroo (Figure 1 A), the system
automatically highlights anomalous groups for inspection. Lou is
presented with wrangling suggestions specific to each error type—
such as imputation, deletion, or conversion—and can apply these
repairs interactively. Crucially, the visual interface reveals how each
action affects related groups in real time, allowing Lou to iteratively
explore, evaluate, and undo changes as needed. Once the data is in
a satisfactory state, Buckaroo can export a Python script encoding
all the wrangling steps for future reuse or automation.

A prototype of Buckaroowill be demonstrated at VLDB 2025 [20].
The demo version operates entirely in client-side memory and is
intended for smaller datasets. While suitable for showcasing inter-
action design, it lacks the scalability features required for real-world
deployment. In this paper, we present our ongoing efforts to scale
Buckaroo by introducing server-side storage, differential snapshot
management, and efficient update propagation—making the system
scalable and practical for large, real-world datasets. Throughout

the paper, we use the terms "anomaly" and "error" interchangeably,
as well as "wrangling" and "repair."

Contributions. Buckaroo introduces a new paradigm for data
wrangling by tightly integrating anomaly detection, visual explo-
ration, and repair within a single interactive interface. This paper
makes the following contributions:

• A group-based abstraction that organizes anomalies into inter-
pretable visual summaries, enabling users to interact with data
through an orchestrated set of interactive charts.

• An extensible framework for registering custom error detectors
and repair functions, allowing domain-specific wrangling logic
to be incorporated.

• Efficient indexing and overlap-tracking structures that support lo-
calized, low-latency anomaly detection and visualization updates
across interdependent views.

• A snapshot storage module that enables undo/redo actions and
code generation, while maintaining scalability over large datasets.

By enabling users to see, understand, and repair anomalies through a
single, unified visual interface, Buckaroo represents a paradigm shift
in how practitioners interact with data. It transforms datawrangling

2

from a brittle and opaque task into an intuitive, transparent, and
reproducible process.

2 SYSTEM OVERVIEW

Buckaroo is a visual data wrangling system that couples anomaly
detection, visualization, and guided repair through a direct ma-
nipulation interface. Figure 2 illustrates the overall architecture,
comprising five components that span frontend interactions and
backend processing. To support large datasets, Buckaroo manages
all data storage and access through a Postgres backend.

The workflow begins when a user uploads a tabular dataset
through the user interface (UI) as illustrated in Figure 2 1 . Bucka-
roo then stores the data into a Posgres database and generates
groups by projecting numerical attributes onto categorical attributes
(Figure 2 5). The database also stores metadata linking each tuple
to its associated errors. For each group, built-in or user-defined
detectors are used to identify anomalies such as missing values,
outliers, or type mismatches (Figure 2 3). These anomalies are
visualized through interactive charts, where users can inspect and
select problematic groups. Since plotting every data point is imprac-
tical, Buckaroo employs data selection and aggregation strategies
to determine which subset of the table to visualize (Figure 2 2).
Based on the anomaly type, Buckaroo presents corresponding
wrangling suggestions—both default and user-defined—that users
can apply directly to the chart (Figure 2 4).

As users manipulate the data visually, the system tracks changes,
re-runs localized detection only on affected groups, and updates
all impacted views efficiently. All user actions are logged, and a
differential snapshot mechanism ensures storage efficiency and
supports undo/redo functionality (Figure 2 5). Buckaroo also
creates Postgres indexes for all the attribute combinations in the
charts for efficient data lookups. Finally, once the user is satisfied
with the cleaned data, Buckaroo generates an executable Python
script that captures the full sequence of wrangling operations for
reuse or automation. Currently, Buckaroo only generates Python
scripts, but we intend to support other target languages such as R.
We now describe the major components of Buckaroo.

2.1 Group Generation

In Buckaroo, groups serve as the fundamental abstraction for
detecting and visualizing anomalies. A group is defined as a subset
of the dataset obtained by projecting a numerical attribute (e.g.,
Income) onto a categorical attribute (e.g., Country). For example,
the group {Income | Country = "Bhutan"} corresponds to the set of
Income values for all records where the country is “Bhutan”. This
group, along with others defined by different country values, can
be visualized in a chart such as a heatmap with Country on the
X-axis and Income on the Y-axis. Users can control this process by
selecting the projection columns and adjusting granularity (e.g.,
setting a minimum group size). Using group-based analysis, rather
than inspecting individual rows, offers several benefits:
• Summarization: Groups compress many data points into co-
herent aggregates, making it easier to detect outliers, missing
values, or irregular patterns at a glance.

• Isolation within attributes: Grouping has long been used to
isolate error detection and repair (e.g., blocking [6] and subgroup

Maintain indexes

Keep track of error

to tuple mapping

Error sampling

Figure 2: System architecture of Buckaroo. All interactions

are mediated by backend components that handle error de-

tection, wrangling suggestions, and state management.

discovery [5]). Groups defined over a single categorical attribute
are disjoint—each row belongs to exactly one group per attribute.
This means that repairing an anomaly in one group (e.g., Country
= Bhutan) does not require updates to other groups using the
same attribute with a different value.

However, as in the motivating example, groups defined over differ-
ent attributes can overlap, since a single rowmay belong to multiple
groups across multiple charts. Buckaroo tracks these dependencies
and selectively updates only affected groups when a repair is made
(more details in Section 3.3).

2.2 Interactive User Interface

Buckaroo generates a chart matrix (see cropped view in
Figure 1 B) where each histogram bar is subdivided into boxes
representing data groups. Detected anomalies are visually over-
laid across chart types—scatterplots, histograms, heatmaps—with
groups color-coded by their dominant anomaly type. Users can
interactively explore, filter, and manipulate these groups directly
through the visual interface.

Buckaroo records all user actions—such as applying a repair,
exploring a group, or undoing a prior fix—and communicates them
to the backend to maintain a synchronized and consistent snapshot.
The UI also displays ranked anomaly (based on their frequency in
the data) summaries and offers a repair kit sidebar to surface ap-
propriate wrangling options for selected groups. The main features
of the UI are as follows:
• Dynamic anomaly mapping: Errors are overlaid onto chart
elements, enabling real-time visual diagnosis.

• Immediate feedback: Each repair updates all the visualizations
instantly, allowing users to assess downstream effects.

• Iterative editing: Users can undo/redo actions, making wran-
gling an exploratory, reversible process.

• Script generation: Once the wrangling process is complete, the
interface offers a downloadable Python script.

3

3 ERROR DETECTION ANDWRANGLING

Buckaroo supports both generic and domain-specific error detec-
tion to surface data issues during interactive wrangling. For each
detected error type, Buckaroo provides corresponding wranglers
that can be applied directly through the interactive charts.

3.1 Error Detection

Built-in detectors identify common anomalies such as missing val-
ues, outliers, type mismatches, and small groups (groups containing
few points). However, data quality is often domain-dependent [6],
requiring customized logic. To address this, Buckaroo offers an
extensible API through which users can define their own detec-
tors that operate at the group level, enabling flexible and reusable
domain-specific validation.

Built-in Error Types. Buckaroo supports the following built-in
error types:
• Missing Values: Identifies null or undefined cells within groups.
• Outliers: Flags values outside a configurable threshold (e.g., 2
standard deviations from the global mean).

• Type Mismatches: Detects non-numeric entries in numeric
columns (e.g., “12k” in a salary field).

• Group Incompleteness: Marks groups with cardinality below
a minimum threshold.
In the current Buckaroo prototype, built-in error detectors are

implemented as SQL queries, allowing them to run directly on the
underlying database.

Custom Error Detectors. Users can register domain-specific de-
tectors via a simple API. A detector is a function that receives a
group and target attribute and returns a list of anomalous tuples.
Each custom detector is mapped to a unique error code. This ex-
tensibility allows domain experts to define tailored quality checks
(e.g., clinical code mismatches or sensor dropouts). For instance,
the following custom detector detects if an income is less than 0:
1 def custom_detector(df: pd.DataFrame = None ,

2 target_column: str = "",

3 error_type_code: str = "") -> list

:

4 if error_type_code == "negative_income":

5 if df is None:

6 # Write SQL query to detect the error

7 query = f"SELECT id FROM your_table WHERE

{target_column} < 0"

8
9 return sys.get_row_ids(query)

The detector returns a list of row indices corresponding to tuples
exhibiting a specified error type. As shown in the listing above,
certain errors—such as negative values—can be efficiently detected
using a SQL query. However, not all error types are expressible
in SQL [8]. To accommodate such cases, Buckaroo supports an
optional Pandas DataFrame input, allowing detectors to operate
directly on in-memory data when SQL alone is insufficient.

3.2 Data Wrangling

Once errors are detected, Buckaroo enables users to explore and
resolve them through interactive, direct manipulation of visualiza-
tions. Users can select anomalous groups or individual data points

in the chart and invoke repair operations from a contextual re-
pair suggestion toolkit. These actions are reversible and can be
iteratively applied to explore their effect on the overall dataset.

Buckaroo provides built-in wranglers for common error types
and allows users to define custom wranglers via the Buckaroo
API, by mapping a user-defined function to a specific error code.

Repair Suggestions. Upon selecting a group or data point with
an anomaly, Buckaroo presents a menu of repair options tailored
to the error type. For instance, a missing value might prompt the
user to choose between imputation (e.g., using the group mean)
or row deletion, while a type mismatch might offer a conversion
routine. For example, in Figure 1 A a user selects a data anomaly,
which prompts Buckaroo to suggest appropriate wrangling ac-
tions. For each suggestion, a preview (Figure 1 B) of the intended
repair is generated. Since datasets may contain a large number of
errors, Buckaroo prioritizes user attention by ranking data groups
based on the number of anomalies they contain, surfacing the most
erroneous groups first. Similarly, wrangling suggestions are ranked
by their effectiveness—favoring repairs that resolve the anomaly
with minimal side effects on other groups, i.e., minimal errors are
caused for the other data groups.

Interactive feedback. After a repair is applied, Buckaroo im-
mediately updates the visualization to reflect the modified data.
Following previous architectures [19], Buckaroo maintains a back-
end cache. When a data group is modified, only the affected rows
in the backend cache are updated. To balance performance and
persistence, Buckaroo periodically flushes these changes to the
Postgres database—by default, after every three updates, which
can be configured by the user. This feedback loop allows users
to observe the downstream consequences of a change, including
the emergence or resolution of other errors across related groups.
By visualizing repair effects, users can make informed decisions
without needing to script or rerun batch detection or repair jobs.

3.3 Localized Error Detection and Cross-Chart

Dependencies

A key technical challenge in Buckaroo is ensuring that error detec-
tion remains efficient during interactive wrangling. Running anom-
aly detectors across the entire dataset after every repair would be
prohibitively expensive and break the real-time user experience [6].
To address this, Buckaroo adopts a localized and incremental error
detection strategy grounded in group-based computation.

Groups defined by categorical attributes are the atomic units of
visualization and error tracking. Each group is associated with a set
of row identifiers (IDs). Anomaly detection is scoped to those IDs.
When a repair is applied, we re-run detection only for the affected
groups, avoiding unnecessary recomputation.

However, a single row can belong to multiple groups in different
charts depending on the grouping attributes. A row with a missing
Income might appear in a group under Country=Bhutan in one
chart and under Degree=BS in another. A wrangling action on that
row could therefore impact multiple visualizations.

To efficiently handle such cross-chart dependencies, Buckaroo
maintains a group overlap graph, where each node corresponds to a
group and an undirected edge connects any two groups that share

4

one or more rows. When a group is updated, Buckaroo consults
this graph to determine which groups are affected and selectively
re-runs error detection only on those connected components.

4 NAVIGATING DATA ERRORS THROUGH

INTERACTIVE CHARTS

A central design goal of Buckaroo is to enable users to identify
and fix data errors entirely through interactions with visualizations.
However, this raises an important challenge: how can we efficiently
visualize large datasets—especially when most of the data is clean—
and still surface rare but critical errors? To address this, Buckaroo
supports two navigation strategies: single-layer navigation, which
presents an aggregated or sampled view without panning or drill-
down,which is ideal for smaller datasets; andmulti-layer drill-down,
which enables scalable, details-on-demand exploration through
interactive panning and zooming for larger datasets.

Single-Layer Navigation In single-layer navigation, Buckaroo
aims to surface anomalies in a global view without overwhelming
users, despite errors often being rare and visually drowned out.
To address this, Buckaroo uses two sampling strategies: Error
Sampling, which only shows the groups that exhibit anomalies,
and samples from all error types; and Distance-Based Sampling,
which selects points close to anomalies in the feature space to
illustrate how errors deviate from normal patterns.

Multi-Layer Navigation While single-layer navigation offers
broad coverage, it is insufficient for large-scale or high-dimensional
datasets. To support scalable exploration, Buckaroo integrates a
multi-layer navigation engine that enables users to zoom, pan, and
drill down into data regions of interest—loading only the relevant
subsets into view.

This functionality is implemented through a close collaboration
with Hopara1 (based on Kyrix [19]), whose high-performance pan-
and-zoom engine has been embedded into Buckaroo. The result is
an interaction model where users can:
• Drill Down: Click on a region or cluster in the chart to reveal a
more detailed view of the underlying data, including subgroup
breakdowns and localized anomaly summaries.

• Pan and Zoom: Move across the chart space without reloading
the entire dataset. This ensures that only the visible portion of
the data is loaded and rendered at any given time.
The Hopara engine automatically runs SQL queries to fetch each

region. Multi-layer navigation achieves two key goals: (1) it ensures
that only a manageable volume of data is loaded into memory and
visualized at once, improving scalability; and (2) it allows users to
focus their attention on data regions of interest. Together, these
navigation strategies make Buckaroo capable of handling large
datasets in a responsive manner while ensuring that anomalies—no
matter how rare—remain visually accessible and actionable.

5 RELATEDWORK

Anomaly detection and data cleaning. Subgroup discovery is a
well-established task in data engineering [1, 5], focused on identify-
ing statistically distinct and interpretable subsets within a dataset.

1https://hopara.io

Data repair techniques aim to correct erroneous or inconsistent
entries to improve downstream data utility. Classical approaches
often rely on rule-based formalisms such as functional dependen-
cies and denial constraints [10, 13, 15], while other systems apply
statistical or heuristic methods without enforcing hard integrity
constraints [11–13]. While these systems focus on scalable and prin-
cipled error correction, they lack tight integration with user-facing
visual interfaces. Buckaroo complements this body of work by en-
abling direct manipulation of error-driven repairs through a visual
substrate, while remaining agnostic to the underlying detection
and repair algorithms. In doing so, Buckaroo offers an interactive
layer on top of existing data repair logic, bridging human expertise
with automated wrangling.

Wrangling script visualization. A range of systems have inves-
tigated how to visually support the data wrangling process. For
example, Xiong et al. [21] explore techniques for visualizing wran-
gling scripts. Buckaroo takes the inverse approach by embedding
wrangling actions directly within visualizations. Kasica et al. [9]
developed a framework describing the wrangling operations avail-
able to multi-table data, specifically in data journalism contexts,
which was subsequently used by Xiong et al. [21]. Similarly, Wran-
gler [7]—later commercialized as Trifacta—synthesizes transforma-
tion scripts based on user interactions, a concept recently extended
with natural language prompting in Dango [2]. Shrestha et al. [17]
develop a method for visualizing and manipulating data frame
wrangling operations governed by fluent interfaces like pandas. Un-
like these systems, which rely on programming-by-demonstration,
Buckaroo emphasizes real-time, direct manipulation of visual el-
ements to guide repairs. Additionally, Unlike Mosaic [4], which
follows a rule-based, staged pipeline, Buckaroo enables freeform,
direct manipulation of data through visualizations. Ruddle et al.
[16] describe a taxonomy of data profiling tasks and a mapping to
charts that support those tasks. We draw on this mapping in our
visualizations that surface varied errors to the end user.

6 PRELIMINARY RESULTS AND NEXT

STEPS

Buckaroo is a work in progress and is actively being developed.
The current prototype is available at https://github.com/shape-
vis/BuckarooVisualWrangler. Below, we present a preliminary eval-
uation of the system.

6.1 Expert review

As a basic exploration of the applicability of our design, we con-
sulted two CTOs—one at a data integration company and the other
at a data visualization company—in an expert review [3], in which
experts were shown a prototype version of Buckaroo. Both agreed
that the system would likely be useful for data wrangling, particu-
larly highlighting that many users are impeded by high-barriers on
wrangling for large datasets, and that Buckaroo had the potential
to significantly lower those barriers.

However, a common concern was related to the usability of the
system in the presence of large-scale datasets. They also stressed
that the usability of the system will depend on how well we can
summarize erroneous data on the charts as having charts with too
many errors can be overwhelming.

5

https://hopara.io
https://github.com/shape-vis/BuckarooVisualWrangler
https://github.com/shape-vis/BuckarooVisualWrangler

Table 1: Runtime comparison of wrangling operations in

Postgres vs. Pandas. Across all wrangling operations, Post-

gres significantly outperforms Pandas.

Dataset

Postgres

(removal)

Postgres

(impute)

Pandas

(removal)

Pandas

(impute)

StackOverflow 0.18 sec 0.16 sec 1.69 sec 1.27 sec
Adult Income 0.15 sec 0.13 sec 1.40 sec 1.17 sec
Chicago Crime 0.71 sec 0.68 sec 5.87 sec 5.29 sec

Additional validation of the usability of this design, particularly
for the novice user we target, is necessary future work. However,
this initial review is heartening to the validity of this design: center-
ing wrangling in a visualization-based medium seems promising.

6.2 Runtime results

To explore the worries expressed by our experts, we ran a set of pre-
liminary experiments on the Buckaroo runtime. Each experiment
simulates a workload of 50 front-end wrangling operations, mea-
suring backend processing time and frontend re-plotting latency.
These experiments were run on a MacBook Pro with an Apple M4
CPU and 16 GB of RAM.

We use three datasets: StackOverFlow 2 which has 38,091 rows
and 21 columns, The Chicago Crime dataset 3 containing 249,542
rows and 17 columns, and the Adult Income dataset 4 which has
48,843 rows and 15 columns. We compare Buckaroo’s performance
using direct SQL queries over PostgreSQL versus relying on Pandas
DataFrames for backend computation. We can clearly see from
Table 1 that the average response time is much lower when using
Postgres, and that Buckaroo achieves a response time of less than
a second for the data removal (remove a data point) and data impu-
tation (replace value by average of column) wrangling operations.

Hopara evaluation. While full integration of Buckaroo with
Hopara is still in progress, we successfully implemented wrangling
actions within a Hopara drill-down application backed by a Postgres
instance on Amazon Web Services. In particular, we measured the
latency of row removal triggered from an interactive Hopara bar
chart. Across 20 interactions, the average response time was 173ms

and 201ms for the Adult Income dataset, and the StackOverFlow
dataset, respectively.

6.3 Next Steps and Concluding Remarks

We are finalizing the implementation of Buckaroo and its inte-
gration with Hopara. As part of this effort, we are developing an
efficient storage layer based on differential snapshots, avoiding the
overhead of storing full copies after each repair.

In conclusion, this work develops the idea of a directmanipulation-
based data wrangling tool that is mediated through the graphical
medium of visualization. We demonstrate, through our prototype
Buckaroo, how a number of key usability features in such a sys-
tem, such as undo-redo, can be integrated into such a design in
2https://survey.stackoverflow.co
3https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-
q8t2/about_data
4https://www.kaggle.com/datasets/wenruliu/adult-income-dataset

an inherently scalable manner. A key facet of this scalability is
our notions of extensibility, which allow for the construction of
domain-specific error detectors and wranglers. Through this work,
we seek to make data wrangling more approachable by shifting to
a straightforward-to-understand graphical medium.

REFERENCES

[1] Jakob Bach. 2025. Using Constraints to Discover Sparse and Alternative Subgroup
Descriptions. arXiv:2406.01411 [cs.LG] https://arxiv.org/abs/2406.01411

[2] Wei-Hao Chen, Weixi Tong, Amanda Case, and Tianyi Zhang. 2025. Dango: A
Mixed-Initiative Data Wrangling System using Large Language Model. (2025).

[3] Aurora Harley. 2018. UX Expert Reviews. Nielsen Norman Group (25 February
2018). https://www.nngroup.com/articles/uxâĂŚexpertâĂŚreviews/

[4] Jeffrey Heer and Dominik Moritz. 2024. Mosaic: An Architecture for Scalable &
Interoperable Data Views. IEEE Trans. Visualization & Comp. Graphics (Proc. VIS)
(2024). https://doi.org/10.1109/TVCG.2023.3327189

[5] Franciso Herrera, Cristóbal José Carmona, Pedro González, and María José del
Jesus. 2011. An overview on subgroup discovery: foundations and applications.
Knowl. Inf. Syst. 29, 3 (2011), 495–525. https://doi.org/10.1007/s10115-010-0356-2

[6] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM.
[7] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-

gler: Interactive visual specification of data transformation scripts. In SIGCHI
Conference on Human Factors in Computing Systems. 3363–3372.

[8] Bojan Karlaš, Babak Salimi, and Sebastian Schelter. 2025. Navigating Data Errors
in Machine Learning Pipelines: Identify, Debug, and Learn. In Companion of
the 2025 International Conference on Management of Data (Berlin, Germany)
(SIGMOD/PODS ’25). Association for Computing Machinery, New York, NY, USA,
813–820. https://doi.org/10.1145/3722212.3725636

[9] Stephen Kasica, Charles Berret, and Tamara Munzner. 2020. Table scraps: An
actionable framework for multi-table data wrangling from an artifact study
of computational journalism. IEEE Transactions on visualization and computer
graphics 27, 2 (2020), 957–966.

[10] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On approximating optimum
repairs for functional dependency violations. In Proceedings of the 12th Interna-
tional Conference on Database Theory (ICDT ’09). 53–62. https://doi.org/10.1145/
1514894.1514901

[11] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-
rection via a Unified Context Representation and Transfer Learning. Proc. VLDB
Endow. 13, 11 (2020), 1948–1961.

[12] Zan Ahmad Naeem, Mohammad Shahmeer Ahmad, Mohamed Y. Eltabakh,
Mourad Ouzzani, and Nan Tang. 2024. RetClean: Retrieval-Based Data Cleaning
Using Foundation Models and Data Lakes. In Proceedings of the VLDB Endowment,
Vol. 17. 4421–4424. https://doi.org/10.14778/3685800.3685890

[13] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holoclean:
Holistic data repairs with probabilistic inference. In VLDB, Vol. 10. 1190–1201.

[14] El Kindi Rezig, Lei Cao, Giovanni Simonini, Maxime Schoemans, Samuel Madden,
Nan Tang, Mourad Ouzzani, and Michael Stonebraker. 2020. Dagger: A Data (not
code) Debugger. In CIDR.

[15] El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid, Ahmed R.
Mahmood, and Michael Stonebraker. 2021. Horizon: scalable dependency-driven
data cleaning. Proc. VLDB Endow. 14, 11 (2021), 2546–2554.

[16] Roy A Ruddle, James Cheshire, and Sara Johansson Fernstad. 2023. Tasks and visu-
alizations used for data profiling: A survey and interview study. IEEE Transactions
on Visualization and Computer Graphics (2023).

[17] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A fluent code
explorer for data wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 198–207.

[18] Cláudio T. Silva, Juliana Freire, Emanuele Santos, and Erik W. Anderson. 2010.
Provenance-Enabled Data Exploration and Visualization with VisTrails. In SIB-
GRAPI Conference on Graphics, Patterns and Images. 1–9. https://doi.org/10.1109/
SIBGRAPI-T.2010.9

[19] Wenbo Tao, Xiaoyu Liu, Yedi Wang, Leilani Battle, Çağatay Demiralp, Remco
Chang, and Michael Stonebraker. 2019. Kyrix: Interactive Pan/Zoom Visualiza-
tions at Scale. In Computer Graphics Forum, Vol. 38. Wiley Online Library.

[20] Annabelle Warner, Andrew McNutt, Paul Rosen, and El Kindi Rezig. 2025. Bucka-
roo: A Direct Manipulation Visual Data Wrangler. In Proceedings of the VLDB
Endowment (Demonstration Track). Demo.

[21] Kai Xiong, Zhongsu Luo, Siwei Fu, Yongheng Wang, Mingliang Xu, and Yingcai
Wu. 2022. Revealing the semantics of data wrangling scripts with COMANTICS.
IEEE Transactions on Visualization and Computer Graphics 29, 1 (2022), 117–127.
https://doi.org/10.1109/TVCG.2022.3209470

6

https://arxiv.org/abs/2406.01411
https://arxiv.org/abs/2406.01411
https://www.nngroup.com/articles/ux‑expert‑reviews/
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.1007/s10115-010-0356-2
https://doi.org/10.1145/3722212.3725636
https://doi.org/10.1145/1514894.1514901
https://doi.org/10.1145/1514894.1514901
https://doi.org/10.14778/3685800.3685890
https://doi.org/10.1109/SIBGRAPI-T.2010.9
https://doi.org/10.1109/SIBGRAPI-T.2010.9
https://doi.org/10.1109/TVCG.2022.3209470

	Abstract
	1 introduction
	2 System Overview
	2.1 Group Generation
	2.2 Interactive User Interface

	3 Error Detection and wrangling
	3.1 Error Detection
	3.2 Data Wrangling
	3.3 Localized Error Detection and Cross-Chart Dependencies

	4 Navigating Data Errors Through Interactive Charts
	5 Related work
	6 Preliminary results and next steps
	6.1 Expert review
	6.2 Runtime results
	6.3 Next Steps and Concluding Remarks

	References

